. Focused ultrasound (FUS) neuromodulation non-invasively alters brain activity, likely via acoustic radiation force with dynamics of the pulse repetition frequency (PRF). PRF impacts neuromodulation as well as indirect auditory activation, a confound linked to skull vibrations. This study aimed to minimize these vibrations, by adjusting and randomizing PRF, and determine their impact on FUS-induced motor activity. We hypothesized that: the skull would vibrate most at a specific PRF; randomizing PRF would reduce skull vibrations without affecting motor responses; and FUS would yield motor activity while actuator-induced skull vibrations would not.. Three objectives were studied in parallel using C57Bl/6 mice (= number of mice used per objective). First, skull vibration amplitude, measured as a percentage of maximum amplitude per treatment, was recorded via contact microphone over a range of PRFs to assess the PRF-dependency of skull vibrations (= 19). Vibrations were then compared between random and fixed PRFs (= 15). Lastly, motor responses were compared between fixed 1.5 kHz PRF FUS, random PRF FUS, air-puff stimulation, sham stimulation, and vibration induction via piezoelectric actuator (= 30).The study found amplitude peaked at 1.51 kHz (88.1 ± 11.5%), significantly higher than at 0.54 kHz (75.5 ± 15.1%;= 0.0149). Random PRF reduced amplitude by 4.2% (= 0.0181). Motor response rates to actuator-induced skull vibrations at the PRF (5.73 ± 6.96%) and its third harmonic (22.9 ± 22.7%) were not significantly different than sham (14.1 ± 11.6%), but lower than FUS (70.2 ± 16.3%;< 0.0001).. Based on these results, PRF near 0.5 kHz may best avoid skull vibrations, while random PRF could be utilized to slightly reduce vibration amplitude. The results also suggested that skull vibrations likely do not significantly impact motor responses to FUS neuromodulation.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/acda0cDOI Listing

Publication Analysis

Top Keywords

skull vibrations
32
motor responses
16
random prf
12
prf
11
skull
10
vibrations
10
vibrations motor
8
focused ultrasound
8
fus neuromodulation
8
randomizing prf
8

Similar Publications

Jansen metaphyseal chondrodysplasia (JMC) is an ultra-rare disorder caused by constitutive activation of parathyroid hormone type 1 receptor (PTH1R). We sought to characterize the craniofacial phenotype of patients with the disease. Six patients with genetically confirmed JMC underwent comprehensive craniofacial phenotyping revealing a distinct facial appearance that prompted a cephalometric analysis demonstrating a pattern of mandibular retrognathia.

View Article and Find Full Text PDF

Thanks to affordable 3D printers, creating complex designs like anatomically accurate dummy heads is now accessible. This study introduces dummy heads with 3D-printed skulls and silicone skins to explore crosstalk cancellation in bone conduction (BC). Crosstalk occurs when BC sounds from a transducer on one side of the head reach the cochlea on the opposite side.

View Article and Find Full Text PDF

What Is Grazing Time? Insights from the Acoustic Signature of Goat Jaw Activity in Wooded Landscapes.

Sensors (Basel)

December 2024

Rangeland Service, Ministry of Agriculture and Food Security, P.O. Box 30, Rishon LeZion 5025001, Israel.

Acoustic monitoring facilitates the detailed study of herbivore grazing by generating a timeline of sound bursts associated with jaw movements (JMs) that perform bite or chew actions. The unclassified stream of JM events was used here in an observational study to explore the notion of "grazing time". Working with shepherded goat herds in a wooded landscape, a horn-based acoustic sensor with a vibration-type microphone was deployed on a volunteer animal along each of 12 foraging routes.

View Article and Find Full Text PDF

The prevalence of unilateral deafness (SSD) or asymmetric hearing loss (AHL) among patients with hearing impairments ranges from 7.2% to 15.0%, indicating a relatively significant proportion.

View Article and Find Full Text PDF

 - a large-scale dataset of 3D medical shapes for computer vision.

Biomed Tech (Berl)

December 2024

Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen (AöR), Essen, Germany.

Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!