Background: Titanium tetrafluoride has been shown to protect tooth enamel from demineralization. This study investigated the effect of incorporating different concentrations of TiF4 (1, 2 and 3 Wt.%) into an orthodontic primer on the shear bond strength of orthodontic brackets and the enamel microhardness after cariogenic challenges.

Methods: Three different TiF4 concentrations (1, 2 and 3 Wt.%) were prepared and added to the etch and rinse orthodontic primer. Ninety freshly extracted premolars were randomly divided into five groups according to the experimental primers and ageing conditions: TF0, TF0C, TF1C, TF2C, and TF3C. The TF0C group had no TiF4 in the primer, while TF1C, TF2C, and TF3C had 1, 2 and 3 Wt.% TiF4 in the primer, respectively. In the TF0 group, specimens were immersed in deionized water for 24 h as a control group, while all other groups were immersed in a demineralizing solution for 28 days. Each of the five groups was divided into two subgroups: The first group was subjected to shear bond strength and adhesive remnant index testing (N = 50 teeth, 10/group), while the second group was subjected to enamel surface microhardness testing (N = 25 teeth, 50 tooth halves, 10 tooth halves/group). Fifteen teeth (N = 15 teeth, n = 3/group) representing the five groups were subjected to SEM and microelemental analysis (EDX). SBS, ARI, microhardness, and Ca/P ratio were measured, and the data were analyzed using ANOVA and Tukey's tests.

Results: The TF2C group had the highest SBS value (9.93 ± 1.23), while the TF0C (5.24 ± 0.65) and TF3C (5.13 ± 0.55) had the lowest SBS values. The enamel microhardness in the TF0C group was significantly reduced (p < .001). Enamel microhardness values were significantly (p < .001) higher in groups TF1C, TF2C, and TF3C than in TF0C. The highest Ca/P ratio was significantly recorded for the TF2C group (2.65 ± 0.02).

Conclusions: Incorporation of 1 and 2 Wt.% TiF4 into the orthodontic primers showed adequate bond strength and better remineralization effect. However, 1 Wt.% TiF4 showed lower ARI values than 2 Wt.% TiF4.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227981PMC
http://dx.doi.org/10.1186/s12903-023-03063-2DOI Listing

Publication Analysis

Top Keywords

titanium tetrafluoride
8
orthodontic primer
8
shear bond
8
bond strength
8
enamel microhardness
8
tf1c tf2c
8
tf2c tf3c
8
tf0c group
8
tif4 primer
8
group subjected
8

Similar Publications

Development of TiF4-Dendrimer complex gel as an anti-demineralization agent for dentin: An in vitro study.

Dent Mater

February 2025

Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Restorative Dentistry Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Objective: The anti-caries effects of titanium tetrafluoride (TiF4) are well-documented, but its low pH challenges clinical application. This study evaluated PEG-citrate dendrimer as a carrier to enhance TiF4 stability and efficacy.

Methods: PEG-citrate dendrimer and TiF4-dendrimer gel were synthesized, and their structures confirmed using Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance (1H NMR), and Liquid Chromatography-Mass Spectrometry (LC-MS).

View Article and Find Full Text PDF

An animal model was applied to develop erosive tooth wear (ETW) and to evaluate the efficacy and safety of titanium tetrafluoride (TiF) in preventing ETW. Forty-eight male Wistar rats were divided into three groups (n = 16): TiF (2.45% F), NaF (2.

View Article and Find Full Text PDF

Objective: This study evaluated the color change, surface roughness, mineral content and morphology of enamel bleached with 35% hydrogen peroxide (HP) combined with an experimental gel containing 1% titanium tetrafluoride (TiF).

Materials And Methods: Bovine enamel blocks were treated with (n = 12): (TiF) experimental gel containing 1% TiF, (HP) 35% HP, (HPT) 35% HP + 1% TiF and (CT) control. Bleaching with HP was performed in 3 sessions (3 × 15 min/applications).

View Article and Find Full Text PDF

Introduction Microorganisms play an important role in causing inflammation in the pulp and periapical regions. Even after undergoing chemo-mechanical procedures during root canal treatment, bacteria may persist within dentinal tubules, posing a risk of disease recurrence. Mineral trioxide aggregate (MTA), introduced as a dental material, has been investigated as a potential antibacterial agent since its early use.

View Article and Find Full Text PDF

In contrast to the conversion of diphenylmethanol to the corresponding halides with an equivalent of titanium tetrachloride or -bromide, catalytic (50 mol%) titanium tetrafluoride converts benzhydrols in diethyl ether or dichloromethane to bis(benzhydryl) ethers within 0.5-1 h at room temperature. Cross ether formation with diphenylmethanols and primary aryl or aliphatic alcohols is achieved in the presence of 25 mol% TiF in refluxing toluene as solvent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!