Background: Contact sports athletes and military personnel who suffered a repetitive mild traumatic brain injury (rmTBI) are at high risk of neurodegenerative diseases such as advanced dementia and chronic traumatic encephalopathy (CTE). However, due to the lack of specific biological indicators in clinical practice, the diagnosis and treatment of rmTBI are quite limited.
Methods: We used 2-methacryloyloxyethyl phosphorylcholine (MPC)-nanocapsules to deliver immunoglobulins (IgG), which can increase the delivery efficiency and specific target of IgG while reducing the effective therapeutic dose of the drug.
Results: Our results demonstrated that MPC-capsuled immunoglobulins (MPC-n (IgG)) significantly alleviated cognitive impairment, hippocampal atrophy, p-Tau deposition, and myelin injury in rmTBI mice compared with free IgG. Furthermore, MPC-n (IgG) can also effectively inhibit the activation of microglia and the release of inflammatory factors.
Conclusions: In the present study, we put forward an efficient strategy for the treatment of rmTBI-related cognitive impairment and provide evidence for the administration of low-dose IgG.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228048 | PMC |
http://dx.doi.org/10.1186/s12916-023-02895-7 | DOI Listing |
BMC Med
May 2023
Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
Background: Contact sports athletes and military personnel who suffered a repetitive mild traumatic brain injury (rmTBI) are at high risk of neurodegenerative diseases such as advanced dementia and chronic traumatic encephalopathy (CTE). However, due to the lack of specific biological indicators in clinical practice, the diagnosis and treatment of rmTBI are quite limited.
Methods: We used 2-methacryloyloxyethyl phosphorylcholine (MPC)-nanocapsules to deliver immunoglobulins (IgG), which can increase the delivery efficiency and specific target of IgG while reducing the effective therapeutic dose of the drug.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!