Industrial revolution on the back of fossil fuels has costed humanity higher temperatures on the planet due to ever-growing concentration of carbon dioxide emissions in Earth's atmosphere. To tackle global warming demand for renewable energy sources continues to increase. Along renewables, there has been a growing interest in converting carbon dioxide to methanol, which can be used as a fuel or a feedstock for producing chemicals. The current review study provides a comprehensive overview of the recent advancements, challenges and future prospects of methanol production and purification via membrane-based technology. Traditional downstream processes for methanol production such as distillation and absorption have several drawbacks, including high energy consumption and environmental concerns. In comparison to conventional technologies, membrane-based separation techniques have emerged as a promising alternative for producing and purifying methanol. The review highlights recent developments in membrane-based methanol production and purification technology, including using novel membrane materials such as ceramic, polymeric and mixed matrix membranes. Integrating photocatalytic processes with membrane separation has been investigated to improve the conversion of carbon dioxide to methanol. Despite the potential benefits of membrane-based systems, several challenges need to be addressed. Membrane fouling and scaling are significant issues that can reduce the efficiency and lifespan of the membranes. The cost-effectiveness of membrane-based systems compared to traditional methods is a critical consideration that must be evaluated. In conclusion, the review provides insights into the current state of membrane-based technology for methanol production and purification and identifies areas for future research. The development of high-performance membranes and the optimization of membrane-based processes are crucial for improving the efficiency and cost-effectiveness of this technology and for advancing the goal of sustainable energy production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.139007 | DOI Listing |
Chem Rec
January 2025
Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India.
Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre for Plasma and Laser Engineering, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera Street, 80-231 Gdańsk, Poland.
Research on titanium nanotubes modified with metal sulfides, particularly bismuth sulfide (BiS), aims to create heterostructures that efficiently absorb sunlight and then separate photogenerated charge carriers, thereby enhancing the energy conversion efficiency. This study shows a key role of solvent used for sulfide and bismuth salt solutions used during successive ionic layer adsorption and reaction (SILAR) onto the morphology, structure, and photoresponse of the heterojunction where one element is represented by semitransparent titania nanotubes (gTiNT) and the second is BiS. Using 2-methoxyethanol and methanol during SILAR, results in remarkably photoactive 3D heterostructure and recorded photocurrents were 44 times higher compared to bare titania nanotubes.
View Article and Find Full Text PDFDrug Target Insights
January 2025
Department of Pharmacology, University of Free State, Bloemfontein - South Africa.
Introduction: biofilm formation is a significant contributor to antifungal resistance, necessitating new treatment strategies. Lin., a traditional herbal remedy, has shown promise in combating microbial infections.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
Laboratory-scale spin-coating techniques are widely employed for fabricating small-size, high-efficiency perovskite solar cells. However, achieving large-area, high-uniformity perovskite films and thus high-efficiency solar cell devices remain challenging due to the complex fluid dynamics and drying behaviors of perovskite precursor solutions during large-area fabrication processes. In this work, a high-quality, pinhole-free, large-area FAPbI perovskite film is successfully obtained via scalable blade-coating technology, assisted by a novel bidirectional Marangoni convection strategy.
View Article and Find Full Text PDFBioresour Technol
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China. Electronic address:
The biological fixation of CO and C1-feedstocks like methanol derived from CO are considered as an important technology combating in global warming issues. The microorganisms that can co-assimilate CO and methanol are highly desired. Here, we constructed a synergistic assimilation pathway in Butyribacterium methylotrophicum (B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!