Though Honokiol was known to have anti-inflammatory, antioxidant, anticancer, antithrombotic, anti-viral, metabolic, antithrombotic, and neurotrophic activities, the underlying mechanisms of Honokiol on epithelial-mesenchymal transition (EMT) mediated liver fibrosis still remain elusive so far. Anti-EMT and antifibrotic effects of Honokiol were explored in murine AML-12 hepatocyte cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, wound healing assay, Western blotting and also in CCl4-induced liver injury mouse model by immunohistochemistry. Honokiol significantly suppressed transforming growth factor β1 (TGF-β1)-induced EMT and migration of AML-12 cells along with decreased EMT phenotypes such as loss of cell adhesion and formation of fibroblast like mesenchymal cells in TGF-β1-treated AML-12 cells. Consistently, Honokiol suppressed the expression of Snail and transmembrane protease serine 4 (TMPRSS4), but not p-Smad3, and activated E-cadherin in TGF-β1-treated AML-12 cells. Additionally, Honokiol reduced the expression of β-catenin, p-AKT, p-ERK, p-p38 and increased phosphorylation of glycogen synthase kinase 3 beta (GSK3β) and JNK in TGF-β1-treated AML-12 cells via TGF-β1/nonSmad pathway. Conversely, GSK3β inhibitor SB216763 reversed the ability of Honokiol to reduce Snail, β-catenin and migration and activate E-cadherin in TGF-β1-treated AML-12 cells. Also, Honokiol suppressed hepatic steatosis and necrosis by reducing the expression of TGF-β1 and α-SMA in liver tissues of CCl4 treated mice. These findings provide scientific evidence that Honokiol suppresses EMT and hepatic fibrosis via activation of E-cadherin/GSK3β/JNK and inhibition of AKT/ERK/p38/β-catenin/TMPRSS4 signaling axis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ptr.7871DOI Listing

Publication Analysis

Top Keywords

aml-12 cells
20
tgf-β1-treated aml-12
16
honokiol suppressed
12
honokiol
10
epithelial-mesenchymal transition
8
hepatic fibrosis
8
fibrosis activation
8
inhibition akt/erk/p38/β-catenin/tmprss4
8
akt/erk/p38/β-catenin/tmprss4 signaling
8
signaling axis
8

Similar Publications

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), an oxidative derivative of tire anti-degradant, has been linked to mortality in coho salmon (Oncorhynchus kisutch) and has exhibited potential human toxicity. Hence, exploring how 6PPD-Q interacts with biomacromolecules like enzymes is indispensable to assess its human toxicity and elucidate its mechanism of action. This investigation aims to explore the impact of 6PPD-Q on lactate dehydrogenase (LDH) through various methods.

View Article and Find Full Text PDF

Diabetic liver injury (DLI) refers to liver injury resulting from prolonged chronic hyperglycemia and represents a significant complication associated with diabetes, The specific pathogenic mechanism of DLI remains incompletely understood. Tumor necrosis factor α (TNF-α) has been demonstrated to play a crucial role in diabetic complications through intricate signalling pathways, including pyroptosis. However, it remains uncertain whether TNF-α mediates pyroptosis in DLI, we initially established an in vitro model of DLI and confirmed the presence of an inflammatory state characterized by TNF-α in DLI.

View Article and Find Full Text PDF

Sleep deprivation alters hepatic UGT1A9 and propofol metabolism in mice.

Biochem Pharmacol

December 2024

Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China. Electronic address:

Sleep deprivation (SD) causes circadian misalignment, and circadian clock disruption is associated with metabolic diseases such as obesity, insulin resistance, and diabetes. However, the underlying mechanism for SD-induced circadian clock disruption as well as metabolic enzyme changes is still lacking. Here, we developed SD sensitizes mice with disrupted circadian rhythms to demonstrate the regulation role and mechanism of SD in UDP-glucuronosyltransferases (UGTs) expression and the metabolism of corresponding substrates.

View Article and Find Full Text PDF

Liupao tea is a postfermented dark tea with hypolipidemic activity. Research on the active substances in Liupao tea has primarily focused on those derived from the tea itself, overlooking the secondary metabolites produced by its predominant fungus, . In this study, CPCC 401251, the predominant strain found in Liupao tea under investigation, was isolated and analyzed.

View Article and Find Full Text PDF

While significant progress has been made in understanding various aspects of liver regeneration, the molecular mechanisms responsible for the initiation and termination of cell proliferation in the liver following massive tissue loss or injury of liver remain unknown. As it was previously shown, the loss of liver mass affects putative hepatocyte-specific mitogenic inhibitors in the blood. Although the presence of these putative inhibitors regulating precise liver regeneration has been described in numerous publications, they have never been identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!