Large greenhouse gas emissions occur via the release of carbon dioxide (CO) and methane (CH) from the surface layer of lakes. Such emissions are modeled from the air-water gas concentration gradient and the gas transfer velocity (). The links between and the physical properties of the gas and water have led to the development of methods to convert between gases through Schmidt number normalization. However, recent observations have found that such normalization of apparent estimates from field measurements can yield different results for CH and CO. We estimated for CO and CH from measurements of concentration gradients and fluxes in four contrasting lakes and found consistently higher (on an average 1.7 times) normalized apparent values for CO than CH. From these results, we infer that several gas-specific factors, including chemical and biological processes within the water surface microlayer, can influence apparent estimates. We highlight the importance of accurately measuring relevant air-water gas concentration gradients and considering gas-specific processes when estimating .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10269337 | PMC |
http://dx.doi.org/10.1021/acs.est.2c09230 | DOI Listing |
Bioresour Technol
December 2024
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. Electronic address:
Electro-assisted biodehalogenation (EASB) as a biostimulation strategy can accelerate the slow attenuation of emerging halogenated contaminants (EHCs) in anaerobic aqueous environments. A timely review is urgent to evaluate the knowledge gaps and potential opportunities, further facilitating its design and application. Till now, EASB achieves promising progress in accelerating biohalogenation rates, promoting the detoxification of EHCs to cope with unfavourable environments and mitigating greenhouse gas emissions.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China. Electronic address:
Petroleum hydrocarbon contamination, such as n-alkanes, poses a significant global threat to ecosystems and human health. Microbial remediation emerges as a promising strategy for addressing this issue through both aerobic and anaerobic processes. Notably, the majority of anaerobic hydrocarbon degraders identified to date are Gram-negative bacteria.
View Article and Find Full Text PDFSe Pu
January 2025
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
Lipids are indispensable components of living organisms and play pivotal roles in cell-membrane fluidity, energy provision, and neurotransmitter transmission and transport. Lipids can act as potential biomarkers of diseases given their abilities to indicate cell-growth status. For example, the lipid-metabolism processes of cancer cells are distinct from those of normal cells owing to their rapid proliferation and adaptation to ever-changing biological environments.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Biology (DBI), State University of Maringá, Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Graduate Program in Ecology of Inland Water Ecosystems (PEA), State University of Maringá (UEM), Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Nucleus of Limnology, Ictiology and Aquaculture (NUPELIA) of State University of Maringá (UEM). Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Graduate Program Comparate Biology (PGB), State University of Maringá (UEM), Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil.
Floodplains function as global hotspots for the natural production of methane. Some of this methane can be oxidized by methanotrophic bacteria and assimilated into their biomass before reaching the atmosphere. Consequently, aquatic invertebrates that feed on methanotrophic bacteria may transfer methane-derived carbon to higher trophic levels in the aquatic food chain.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China. Electronic address:
It is well known that metals and metal oxides with different crystal facets exhibit varying sensitivity in gas sensors, but this strategy is rarely used in metal-organic frameworks (MOFs). Herein, we proved for the first time that Cu metal-organic with high energy crystal facets (Cu-MOF-74-300) shows a much higher sensitivity than the low energy crystal facets (Cu-MOF-74-110), with a up to 2 times response more than Cu-MOF-74-110 and ultra-low limit of detection (LOD) of 68 ppb to toluene vapors. In addition, this strategy was further demonstrated on MOF-14 and HKUST-1, which are also Cu-centered and exhibit clear recognition effects on benzene and xylene, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!