Globally, one of the most common tissue transplantation procedures is bone grafting. Lately, we have reported the development of polymerized high internal phase emulsions (PolyHIPEs) made of photocurable polycaprolactone (4PCLMA) and shown their potential to be used as bone tissue engineering scaffolds . However, it is essential to evaluate the performance of these scaffolds to investigate their potential in a clinically more relevant manner. Therefore, in this study, we aimed to compare performances of macroporous (fabricated using stereolithography), microporous (fabricated using emulsion templating), and multiscale porous (fabricated using emulsion templating and perforation) scaffolds made of 4PCLMA. Also, 3D-printed macroporous scaffolds (fabricated using fused deposition modeling) made of thermoplastic polycaprolactone were used as a control. Scaffolds were implanted into a critical-sized calvarial defect, animals were sacrificed 4 or 8 weeks after implantation, and the new bone formation was assessed by micro-computed tomography, dental radiography, and histology. Multiscale porous scaffolds that include both micro- and macropores resulted in higher bone regeneration in the defect area compared to only macroporous or only microporous scaffolds. When one-grade porous scaffolds were compared, microporous scaffolds showed better performance than macroporous scaffolds in terms of mineralized bone volume and tissue regeneration. Micro-CT results revealed that while bone volume/tissue volume (Bv/Tv) values were 8 and 17% at weeks 4 and 8 for macroporous scaffolds, they were significantly higher for microporous scaffolds, with values of 26 and 33%, respectively. Taken together, the results reported in this study showed the potential application of multiscale PolyHIPE scaffolds, in particular, as a promising material for bone regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10273180 | PMC |
http://dx.doi.org/10.1021/acsami.3c04362 | DOI Listing |
J Hered
January 2025
Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, 5A, Oester Farimagsgade, Copenhagen, 1353, Denmark.
The stone marten (Martes foina) is an important species for cytogenetic studies in the order Carnivora. ZooFISH probes created from its chromosomes provided a strong and clean signal in chromosome painting experiments and were valuable for studying the evolution of carnivoran genome architecture. The research revealed that the stone marten chromosome set is similar to the presumed ancestral karyotype of the Carnivora, which added an additional value for the species.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
Primary ciliary dyskinesia is a rare monogenic syndrome that is associated with chronic respiratory disease, infertility, and laterality defects. Although more than 50 genes causative of primary ciliary dyskinesia have been identified, variants in the genes encoding coiled-coil domain-containing 39 (CCDC39) and CCDC40 in particular cause severe disease that is not explained by loss of ciliary motility alone. Here, we sought to understand the consequences of these variants on cellular functions beyond impaired motility.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
A ruthenium-catalyzed intramolecular cascade cyclization of allene-alkyne has been achieved. This method offers a streamlined and atom-economical approach for the construction of sulfone bearing 1-cyclopenta[]naphthalenes, an important structural scaffold that exists in biologically active compounds. Our approach, backed by mechanistic insights from deuterium labeling, DFT calculations, and potential for reaction scale-up, presents synthetic chemists with an invaluable tool for efficiently producing a distinct carbon framework in a one-pot manner.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Computation, Information and Technology, Technical University of Munich, Garching 85748, Germany.
Two-dimensional layered materials (2DLMs) have received increasing attention for their potential in bioelectronics due to their favorable electrical, optical, and mechanical properties. The transformation of the planar structures of 2DLMs into complex 3D shapes is a key strategic step toward creating conformal biointerfaces with cells and applying them as scaffolds to simultaneously guide their growth to tissues and enable integrated bioelectronic monitoring. Using a strain-engineered self-foldable bilayer, we demonstrate the facile formation of predetermined 3D microstructures of 2DLMs with controllable curvatures, called microrolls.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
The introduction of fluorescence imaging (FLI) in near-infrared II sub-channels (NIR-IIb, 1500-1700 nm) has revolutionized the ability to explore complex patho-physiological settings . Despite the transformative potentials, the development of organic NIR IIb dyes encounters considerable difficulties, and only a limited number of such fluorophores have been developed so far. This review systematically introduces design strategies of organic NIR-IIb fluorophores classified by molecular scaffolds, mainly including cyanine dyes and D-A-D small molecule dyes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!