Metal nanoclusters have served as an emerging class of modular nanomaterials. Several efficient strategies have been proposed for transforming cluster precursors into new nanoclusters with customized structures and enhanced performance. However, such nanocluster transformations have still been in a "blind box" state, meaning that the existing intermediates were hard to track with atomic precision. Herein, we present a "slice visualization" approach for in-depth imaging of the nanocluster transformation from AuAg(SR) to AuAg(SR). With this approach, two cluster intermediates, namely, AuAg(SR) and AuAg(SR), were monitored with atomic precision. The four nanoclusters constituted a correlated AuAg ( = 0, 1, 2, and 3) cluster series with comparable structural features─the same AuAg icosahedral kernel but evolutionary peripheral motif structures. The mechanism of nanocluster structure growth was mapped in detail─insertion of Ag(SR) or Ag-induced assembly of surface subunits. The presented "slice visualization" approach not only contributes an ideal cluster platform for in-depth investigations of structure-property correlations but also hopefully acts as a powerful means for obtaining clear information on nanocluster structure evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c02165 | DOI Listing |
Anal Chem
January 2025
Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
Bioimaging technology has been broadly used in biomedicine, and the growth of multimodal imaging technology based on synergistic advantages can overcome the shortcomings of traditional single-modal bioimaging methods and attain high specificity and sensitivity in the fields of bioimaging and biosensing. The analysis of low-abundance microRNAs (miRNAs) in complex organisms is of high importance for early-stage diagnosis and clinical treatment of tumors. In our current study, a biosensing nanoplatform based on Tf-AuNCs and MnO nanosheets was developed for multimodal imaging of tumor cells.
View Article and Find Full Text PDFNanotechnology
January 2025
Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
Bovine serum albumin-capped gold nanoclusters (AuNC@BSA) are ionic, ultra-small, and eco-friendly nanomaterials that exhibit red fluorescence emission. Upon modification, these nanomaterials can serve as imaging probes with multimodal functionality. Owing to their nanoscale properties, AuNC@BSA-based nanomaterials can be readily endocytosed by cells for imaging.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China.
Gold nanoclusters (AuNCs) have garnered significant attention in biomedical applications, particularly in biosensing, cancer therapy, and imaging, due to their unique optical property, good biocompatibility, and distinct bioactivity. Understanding the cellular uptake behavior of AuNCs is critical to improve the efficacy of their applications, whose mechanism has not been adequately validated. In this work, we synthesized AuNCs with varying surface modifications to quantify the exact law of surface charge on the cellular uptake of AuNCs in a multidimensional manner by using 3D multicellular tumor spheroids of both HeLa cells and MCF-7 cells as the model system.
View Article and Find Full Text PDFBiofilms are resistant microbial cell aggregates that pose risks to health and food industries and produce environmental contamination. Accurate and efficient detection and prevention of biofilms are challenging and demand interdisciplinary approaches. This multidisciplinary research reports the application of a deep learning-based artificial intelligence (AI) model for detecting biofilms produced by Pseudomonas aeruginosa with high accuracy.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!