T cell lymphomas (TCLs) are a group of rare and heterogeneous tumors. Although proto-oncogene has an important role in driving T cell lymphomagenesis, whether MYC carries out this function remains poorly understood. Here, we show that malic enzyme 2 (ME2), one of the NADPH-producing enzymes associated with glutamine metabolism, is essential for MYC-driven T cell lymphomagenesis. We establish a transgenic mouse mode, and approximately 90% of these mice develop TCL. Interestingly, knockout of in transgenic mice almost completely suppresses T cell lymphomagenesis. Mechanistically, by transcriptionally up-regulating ME2, MYC maintains redox homeostasis, thereby increasing its tumorigenicity. Reciprocally, ME2 promotes MYC translation by stimulating mTORC1 activity through adjusting glutamine metabolism. Treatment with rapamycin, an inhibitor of mTORC1, blocks the development of TCL both in vitro and in vivo. Therefore, our findings identify an important role for ME2 in MYC-driven T cell lymphomagenesis and reveal that MYC-ME2 circuit may be an effective target for TCL therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266009 | PMC |
http://dx.doi.org/10.1073/pnas.2217869120 | DOI Listing |
Unlabelled: X-linked Lymphoproliferative Syndromes (XLP), which arise from mutations in the or genes, are characterized by the inability to control Epstein-Barr Virus (EBV) infection. While primary EBV infection triggers severe diseases in each, lymphomas occur at high rates with XLP-1 but not with XLP-2. Why XLP-2 patients are apparently protected from EBV-driven lymphomagenesis, in contrast to all other described congenital conditions that result in heightened susceptibility to EBV, remains a key open question.
View Article and Find Full Text PDFMyc hyperactivation coordinately regulates numerous metabolic processes to drive lymphomagenesis. Here, we elucidate the temporal and functional relationships between the medley of pathways, factors, and mechanisms that cooperate to control redox homeostasis in Myc-overexpressing B cell lymphomas. We find that Myc overexpression rapidly stimulates the oxidative pentose phosphate pathway (oxPPP), nucleotide synthesis, and mitochondrial respiration, which collectively steers cellular equilibrium to a more oxidative state.
View Article and Find Full Text PDFBlood Adv
January 2025
Simon Fraser University, Burnaby, British Columbia, Canada.
Comprehensive genetic analysis of tumors with exome or whole genome sequencing has enabled the identification of the genes that are recurrently mutated in cancer. This has stimulated a series of exciting advances over the past 15 years, guiding us to new molecular biomarkers and therapeutic targets among the common mature B-cell neoplasms. In particular, diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and Burkitt lymphoma (BL) have each been the subject of considerable attention in this field.
View Article and Find Full Text PDFCancer Discov
January 2025
Memorial Sloan Kettering Cancer Center, New York, NY, United States.
The role of ubiquitin-mediated degradation mechanisms in the pathogenesis of diffuse large B cell (DLBCL) and follicular lymphoma (FL) is not completely understood. We show that conditional deletion of the E3 ubiquitin ligase Fbxo45 in germinal center B-cells results in B-cell lymphomagenesis in homozygous (100%) and heterozygous (48%) mice. Mechanistically, FBXO45 targets the RHO guanine exchange factor ARHGEF2/GEF-H1 for ubiquitin-mediated degradation.
View Article and Find Full Text PDFJ Nat Med
January 2025
Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing, 402760, China.
Non-Hodgkin lymphomas (NHL), including diffuse large B-cell lymphoma (DLBCL), Burkitt lymphoma (BL), and follicular lymphoma (FL), predominantly arise from B cells undergoing germinal center (GC) reactions. The transcriptional repressor B-cell lymphoma 6 (BCL6) is indispensable for GC formation and contributes to lymphomagenesis via its BTB domain-mediated suppression of target genes. Dysregulation of BCL6 underpins the pathogenesis of GC-derived NHL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!