Across the United States, police chiefs, city officials, and community leaders alike have highlighted the need to de-escalate police encounters with the public. This concern about escalation extends from encounters involving use of force to routine car stops, where Black drivers are disproportionately pulled over. Yet, despite the calls for action, we know little about the trajectory of police stops or how escalation unfolds. In study 1, we use methods from computational linguistics to analyze police body-worn camera footage from 577 stops of Black drivers. We find that stops with escalated outcomes (those ending in arrest, handcuffing, or a search) diverge from stops without these outcomes in their earliest moments-even in the first 45 words spoken by the officer. In stops that result in escalation, officers are more likely to issue commands as their opening words to the driver and less likely to tell drivers the reason why they are being stopped. In study 2, we expose Black males to audio clips of the same stops and find differences in how escalated stops are perceived: Participants report more negative emotion, appraise officers more negatively, worry about force being used, and predict worse outcomes after hearing only the officer's initial words in escalated versus non-escalated stops. Our findings show that car stops that end in escalated outcomes sometimes begin in an escalated fashion, with adverse effects for Black male drivers and, in turn, police-community relations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10266001PMC
http://dx.doi.org/10.1073/pnas.2216162120DOI Listing

Publication Analysis

Top Keywords

stops black
12
stops
11
police stops
8
car stops
8
black drivers
8
stops escalated
8
escalated outcomes
8
escalated
6
black
5
escalated police
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!