Background: The axonal growth capacity of retinal ganglion cells decreases dramatically within the first day of birth, and the axonal regeneration after injury in mature mammals is very limited. Here, this study aimed to delineate the transcriptomic changes associated with altered axonal growth capacity and to identify the key genes associated with axonal regeneration by the RNA sequencing (RNA-Seq) analysis.
Methods: The whole retinas from the mice of embryonic day (E) 20, postnatal day (P) 1 and P3 were collected at 6 hours after optic nerve crush (ONC). Differentially expressed genes (DEGs) for ONC or ages were identified by the RNA-Seq analysis. K-means analysis was conducted for the clustering of DEGs based on expression patterns. Enrichment of functions and signaling pathways analysis were performed based on Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and Gene Set Enrichment analysis (GSEA). Quantitative real time polymerase chain reaction (qRT-PCR) was used to validate the DEGs selected from the RNA-Seq analysis.
Results: In total, 5,408 DEGs were identified for ages, and 2,639 DEGs in neonatal mouse retina after ONC. K-means analysis revealed 7 clusters in age-DEGs and 11 clusters in ONC-DEGs. The GO, KEGG and GSEA pathway analyses identified significantly enrichment of DEGs in the visual perception and phototransduction for the age effect, and the break repair, neuron projection guidance, and immune system pathway for the ONC. PPI analysis identified hub genes in the axon-related gene cluster. The expressions of Mlc1, Zfp296, Atoh7, Ecel1, Creb5, Fosb, and Lcn2, thought to be involved in RGC death and axonal growth were validated by qRT-PCR.
Conclusions: This study, for the first time, delineated the gene expression changes following ON injury in embryonic and neonatal mice, providing a new resource of age- and injury-driven data on axonal growth capacity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228772 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286344 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!