Design of Soft Material Surfaces with Rationally Tuned Water Diffusivity.

ACS Cent Sci

Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States.

Published: May 2023

Water structure and dynamics can be key modulators of adsorption, separations, and reactions at soft material interfaces, but systematically tuning water environments in an aqueous, accessible, and functionalizable material platform has been elusive. This work leverages variations in excluded volume to control and measure water diffusivity as a function of position within polymeric micelles using Overhauser dynamic nuclear polarization spectroscopy. Specifically, a versatile materials platform consisting of sequence-defined polypeptoids simultaneously offers a route to controlling the functional group position and a unique opportunity to generate a water diffusivity gradient extending away from the polymer micelle core. These results demonstrate an avenue not only to rationally design the chemical and structural properties of polymer surfaces but also to design and tune the local water dynamics that, in turn, can adjust the local activity for solutes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214527PMC
http://dx.doi.org/10.1021/acscentsci.3c00208DOI Listing

Publication Analysis

Top Keywords

water diffusivity
12
soft material
8
water
6
design soft
4
material surfaces
4
surfaces rationally
4
rationally tuned
4
tuned water
4
diffusivity water
4
water structure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!