Background: There are about 10-15% of uncommon EGFR mutations found in NSCLC patients, and their sensitivity to EGFR TKIs still lack sufficient clinical evidence, especially for rare compound mutations. Almonertinib is the third generation of EGFR-TKI that has demonstrated excellent efficacy in classical mutations, however, effects in rare mutations have also been rarely reported.

Case Presentation: In this case report, we present a patient with advanced lung adenocarcinoma with a rare EGFR p.V774M/p.L833V compound mutations, who achieved long-lasting and stable disease control after first-line Almonertinib targeted therapy. This case report could provide more information for therapeutic strategy selecting of NSCLC patients harboring rare EGFR mutations.

Conclusion: We report for the first time the long-lasting and stable disease control with Almonertinib for EGFR p.V774M/p.L833V compound mutations treatment, hoping to provide more clinical case references for the treatment of rare compound mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213279PMC
http://dx.doi.org/10.3389/fonc.2023.1159308DOI Listing

Publication Analysis

Top Keywords

compound mutations
20
egfr pv774m/pl833v
12
pv774m/pl833v compound
12
case report
12
mutations
8
lung adenocarcinoma
8
nsclc patients
8
rare compound
8
rare egfr
8
long-lasting stable
8

Similar Publications

Background: Coenzyme Q10 (CoQ10) nephropathy is a well-known cause of hereditary steroid-resistant nephrotic syndrome, primarily impacting podocytes. This study aimed to elucidate variations in individual cell-level gene expression in CoQ10 nephropathy using single-cell transcriptomics.

Methods: We conducted single-cell sequencing of a kidney biopsy specimen from a 5-year-old boy diagnosed with a CoQ10 nephropathy caused by a compound heterozygous COQ2 mutation complicated with immune complex-mediated glomerulonephritis.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is one of the most fatal malignancies in the world, accounting for 42% of all deaths due to metastasis. The significant development is hindered by the multi-drug resistance and poor patient compliance. PIK3CA gene mutation is one of the important causes of TNBC, which causes dysregulation of the cell cycle and cell proliferation.

View Article and Find Full Text PDF

Tyrosine-protein kinase Src plays a key role in cell proliferation and growth under favorable conditions, but its overexpression and genetic mutations can lead to the progression of various inflammatory diseases. Due to the specificity and selectivity problems of previously discovered inhibitors like dasatinib and bosutinib, we employed an integrated machine learning and structure-based drug repurposing strategy to find novel, targeted, and non-toxic Src kinase inhibitors. Different machine learning models including random forest (RF), k-nearest neighbors (K-NN), decision tree, and support vector machine (SVM), were trained using already available bioactivity data of Src kinase targeting compounds.

View Article and Find Full Text PDF

[Site-directed mutagenesis of ent-kaurane diterpenoid C-19 oxidase TwKO in Tripterygium wilfordii].

Zhongguo Zhong Yao Za Zhi

December 2024

National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.

Tripterifordin and neotripterifordin are important ent-kaurane diterpenoids in the Chinese medicinal herb Tripterygium wilfordii, possessing significant anti-HIV(human immunodeficiency virus) activity. On the basis of elucidating the natural biosynthetic pathways of these compounds, heterologous production with microbial cell factories can help to alleviate the reliance on plant resources and provide abundant raw materials for sustainable production. TwKO is the first CYP450 enzyme involved in the biosynthesis of tripterifordin and neotripterifordin.

View Article and Find Full Text PDF

Aims: The aim of this study was to identify sesamin as a Casein hydrolase P (ClpP) inhibitor and to determine whether it could attenuate the virulence of methicillin-resistant Staphylococcus aureus (MRSA).

Methods And Results: Through fluorescence resonance energy transfer (FRET) screening, a natural compound sesamin demonstrated a significant inhibitory effect on ClpP enzyme activity with an IC50 of 20.62 μg/mL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!