AI Article Synopsis

  • The study aims to predict the efficacy of neoadjuvant immunochemotherapy in esophageal cancer using machine learning models based on changes in CT images before and after treatment.
  • A total of 95 patients were split into training and test groups, and new features were created by comparing pre- and post-treatment CT images to improve predictive accuracy.
  • Results showed that the delta group (using changes in imaging features) outperformed the postgroup (using only post-treatment features) with an area under the ROC curve indicating stronger predictive capability for treatment outcomes.

Article Abstract

Background And Purpose: Unnecessary surgery can be avoided, and more appropriate treatment plans can be developed for patients if the efficacy of neoadjuvant immunochemotherapy for esophageal cancer (EC) can be predicted before surgery. The purpose of this study was to evaluate the ability of machine learning models based on delta features of immunochemotherapy CT images to predict the efficacy of neoadjuvant immunochemotherapy in patients with esophageal squamous cell carcinoma (ESCC) compared with machine learning models based solely on postimmunochemotherapy CT images.

Materials And Methods: A total of 95 patients were enrolled in our study and randomly divided into a training group (n = 66) and test group (n = 29). We extracted preimmunochemotherapy radiomics features from preimmunochemotherapy enhanced CT images in the preimmunochemotherapy group (pregroup) and postimmunochemotherapy radiomics features from postimmunochemotherapy enhanced CT images in the postimmunochemotherapy group (postgroup). We then subtracted the preimmunochemotherapy features from the postimmunochemotherapy features and obtained a series of new radiomics features that were included in the delta group. The reduction and screening of radiomics features were carried out by using the Mann-Whitney U test and LASSO regression. Five pairwise machine learning models were established, the performance of which was evaluated by receiver operating characteristic (ROC) curve and decision curve analyses.

Results: The radiomics signature of the postgroup was composed of 6 radiomics features; that of the delta-group was composed of 8 radiomics features. The area under the ROC curve (AUC) of the machine learning model with the best efficacy was 0.824 (0.706-0.917) in the postgroup and 0.848 (0.765-0.917) in the delta group. The decision curve showed that our machine learning models had good predictive performance. The delta group performed better than the postgroup for each corresponding machine learning model.

Conclusion: We established machine learning models that have good predictive efficacy and can provide certain reference values for clinical treatment decision-making. Our machine learning models based on delta imaging features performed better than those based on single time-stage postimmunochemotherapy imaging features.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213404PMC
http://dx.doi.org/10.3389/fonc.2023.1131883DOI Listing

Publication Analysis

Top Keywords

machine learning
32
learning models
24
radiomics features
24
neoadjuvant immunochemotherapy
12
models based
12
delta group
12
features
11
efficacy neoadjuvant
8
machine
8
learning
8

Similar Publications

Introduction: Wearables are electronic devices worn on the body to collect health data. These devices, like smartwatches and patches, use sensors to gather information on various health parameters. This review highlights current use and the potential benefit of wearable technology in patients with inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.

View Article and Find Full Text PDF

This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.

View Article and Find Full Text PDF

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!