The accelerator-driven subcritical system has a strong transmutation ability and high inherent safety, and it is internationally recognized as the most promising long-life nuclear waste disposal device. This study involves the construction of a Visual Hydraulic ExperimentaL Platform (VHELP) for the purpose of evaluating the applicability of Reynolds-averaged Navier-Stokes (RANS) models and analyzing the pressure distribution within the fuel bundle channel of China initiative accelerator-driven system (CiADS). Measurements of thirty differential pressures in edge subchannels within a 19-pin wire-wrapped fuel bundle channel were obtained under different conditions using deionized water. The pressure distribution in the fuel bundle channel at Reynolds numbers of 5000, 7500, 10,000, 12,500, and 15,000 was simulated using Fluent. The results show that RANS models obtained accurate results, and the shear stress transport k-ω model provided the most accurate prediction of the pressure distribution. The difference between the results of the Shear stress transport (SST) k-ω model and experimental data was the smallest, and the maximum difference was ±5.57%. Moreover, the error between the experimental data and numerical results of the axial differential pressure was smaller than that of the transverse differential pressure. The pressure periodicity in axial and transverse directions (one pitch) and a relatively three-dimensional pressure measurements were studied. The static pressure fluctuated and decreased periodically as the z-axis coordinate increased. These results can facilitate research on the cross-flow characteristics of liquid metal-cooled fast reactors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208935PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e16203DOI Listing

Publication Analysis

Top Keywords

fuel bundle
16
bundle channel
16
rans models
12
pressure distribution
12
pressure
9
edge subchannels
8
subchannels 19-pin
8
19-pin wire-wrapped
8
wire-wrapped fuel
8
distribution fuel
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!