This study reports an impact of structure (XRPD, FT-IR) and surface morphology (SEM-EDS) of imatinib-functionalized galactose hydrogels, loaded and unloaded with nHAp, on osteosarcoma cell (Saos-2 and U-2OS) viability, levels of free oxygen radicals, and nitric oxide, levels of BCL-2, p53, and caspase 3 and 9, as well as glycoprotein-P activity. It was investigated how the rough surface of the crystalline hydroxyapatite-modified hydrogel affected amorphous imatinib (IM) release. The imatinib drug effect on cell cultures has been demonstrated in different forms of administration-directly to the culture or the hydrogels. Administration of IM and hydrogel composites could be expected to reduce the risk of multidrug resistance development by inhibiting P.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210190PMC
http://dx.doi.org/10.1021/acsomega.3c00986DOI Listing

Publication Analysis

Top Keywords

imatinib-functionalized galactose
8
galactose hydrogels
8
hydrogels loaded
8
loaded nanohydroxyapatite
4
nanohydroxyapatite drug
4
drug delivery
4
delivery system
4
system osteosarcoma
4
osteosarcoma vitro
4
vitro studies
4

Similar Publications

This study reports an impact of structure (XRPD, FT-IR) and surface morphology (SEM-EDS) of imatinib-functionalized galactose hydrogels, loaded and unloaded with nHAp, on osteosarcoma cell (Saos-2 and U-2OS) viability, levels of free oxygen radicals, and nitric oxide, levels of BCL-2, p53, and caspase 3 and 9, as well as glycoprotein-P activity. It was investigated how the rough surface of the crystalline hydroxyapatite-modified hydrogel affected amorphous imatinib (IM) release. The imatinib drug effect on cell cultures has been demonstrated in different forms of administration-directly to the culture or the hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!