This study reports an impact of structure (XRPD, FT-IR) and surface morphology (SEM-EDS) of imatinib-functionalized galactose hydrogels, loaded and unloaded with nHAp, on osteosarcoma cell (Saos-2 and U-2OS) viability, levels of free oxygen radicals, and nitric oxide, levels of BCL-2, p53, and caspase 3 and 9, as well as glycoprotein-P activity. It was investigated how the rough surface of the crystalline hydroxyapatite-modified hydrogel affected amorphous imatinib (IM) release. The imatinib drug effect on cell cultures has been demonstrated in different forms of administration-directly to the culture or the hydrogels. Administration of IM and hydrogel composites could be expected to reduce the risk of multidrug resistance development by inhibiting P.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210190 | PMC |
http://dx.doi.org/10.1021/acsomega.3c00986 | DOI Listing |
ACS Omega
May 2023
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, Wroclaw 50-422, Poland.
This study reports an impact of structure (XRPD, FT-IR) and surface morphology (SEM-EDS) of imatinib-functionalized galactose hydrogels, loaded and unloaded with nHAp, on osteosarcoma cell (Saos-2 and U-2OS) viability, levels of free oxygen radicals, and nitric oxide, levels of BCL-2, p53, and caspase 3 and 9, as well as glycoprotein-P activity. It was investigated how the rough surface of the crystalline hydroxyapatite-modified hydrogel affected amorphous imatinib (IM) release. The imatinib drug effect on cell cultures has been demonstrated in different forms of administration-directly to the culture or the hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!