In this work, we synthesized and studied the spectroscopic properties of (NH)(SO)Y(HO) (Y = Ni, Mg) crystals doped with AgNO or HBO. These crystals constitute a series of hexahydrated salts known as Tutton salts. We investigated the influence of dopants on the vibrational modes of the tetrahedral ligands NH and SO, octahedral complexes Mg(HO) and Ni(HO), and HO molecules present in these crystals through Raman and infrared spectroscopies. We were able to identify bands that are attributed to the presence of Ag and B dopants, as well as band shifts caused by the presence of these dopants in the crystal lattice. A detailed study of the crystal degradation processes was performed by thermogravimetric measurements, where there was an increase in the initial temperature of crystal degradation due to the presence of dopants in the crystal lattice. Raman spectroscopy of the crystal residues after the thermogravimetric measurements helped us to elucidate the degradation processes occurring after the crystal pyrolysis process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210023PMC
http://dx.doi.org/10.1021/acsomega.3c00622DOI Listing

Publication Analysis

Top Keywords

presence dopants
12
spectroscopic properties
8
tutton salts
8
doped agno
8
agno hbo
8
dopants crystal
8
crystal lattice
8
crystal degradation
8
degradation processes
8
thermogravimetric measurements
8

Similar Publications

Valorization of Selected Biomass-Derived Molecules on Leaves-Biotemplated TiO-g-CN Photocatalysts.

Biomimetics (Basel)

November 2024

Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain.

Biotemplating technique allows the synthesis of catalysts, recreating the sophisticated structure of nature templates. In this work, some biotemplated TiO semiconductors were synthesized using leaves as templates. Then, g-CN was coupled to materials to later incorporate Pt on the surface or as dopant in the structure to evaluate the efficiency of the solids in two photocatalytic applications to valorize biomass: hydrogen production through glycerol photoreforming, and photoacetalization of cinnamaldehyde with 1,2-propanediol.

View Article and Find Full Text PDF

This article studies the synthesis, as well as the structural, vibrational, and optical properties of Eu-doped ZnO quantum dots (QDs) and investigates the energy transfer mechanism from the ZnO host to Eu ions using Reisfeld's approximation. Eu-doped ZnO QDs at varying concentrations (0-7%) were successfully prepared using a wet chemical method. The successful doping of Eu ions into the ZnO host lattice, as well as the composition and valence states of the elements present in the sample, were confirmed through X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses.

View Article and Find Full Text PDF

Rational design of uniform SiO-based afterglow microparticles for photonic crystals.

Mater Horiz

December 2024

Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.

Despite recent advancements in organic phosphors, the synthesis of monodisperse afterglow microparticles (MPs) suitable for creating photonic crystals remains challenging. The SiO matrix is an attractive host material for activating the long-lived emissions of doped molecules due to several factors, including its cross-linked polymer-like structure, abundance of -OH groups, robustness, and presence of numerous emitter defects. However, the Stöber method struggles to produce monodisperse molecule-doped SiO MPs due to the complexity of the system.

View Article and Find Full Text PDF

The potential of diamond-like carbon coatings in medicine can be increased by doping them with various elements. Such modifications especially affect the biological properties of the synthetized films. In the following research, phosphorus was introduced into the carbon matrix by means of the chemical vapor deposition technique and using an organic precursor.

View Article and Find Full Text PDF

Combined experimental and first principles look into (Ce, Mo) doped BiVO.

Heliyon

April 2024

Materials Science Research Laboratory, Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka-1000, Bangladesh.

Here we investigated the effects of Ce and Mo doping on hydrothermally synthesized bismuth vanadate BiVO nanoparticles (NPs). The existence of monoclinic scheelite and tetragonal zircon phases of NPs was validated from Rietveld refinement of the powdered X-ray diffraction, room temperature Raman, and Fourier-transform infrared spectroscopy. The co-doping of Bi and V sites with respective Ce and Mo dopants in a mixed tetragonal zircon and monoclinic scheelite phases of BiVO lattice was corroborated from high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!