High-Thermal-Conductivity and High-Fluidity Heat Transfer Emulsion with 89 wt % Suspended Liquid Metal Microdroplets.

ACS Omega

Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Korea.

Published: May 2023

Colloidal suspensions of thermally conductive particles in a carrier fluid are considered promising heat transfer fluids for various thermal energy transfer applications, such as transportation, plants, electronics, and renewable energy systems. The thermal conductivity () of the particle-suspended fluids can be improved substantially by increasing the concentration of conductive particles above a "thermal percolation threshold," which is limited because of the vitrification of the resulting fluid at the high particle loadings. In this study, eutectic Ga-In liquid metal (LM) was employed as a soft high- filler dispersed as microdroplets at high loadings in paraffin oil (as a carrier fluid) to produce an emulsion-type heat transfer fluid with the combined advantages of high thermal conductivity and high fluidity. Two types of the LM-in-oil emulsions, which were produced via the probe-sonication and rotor-stator homogenization (RSH) methods, demonstrated significant improvements in , i.e., Δ ∼409 and ∼261%, respectively, at the maximum investigated LM loading of 50 vol % (∼89 wt %), attributed to the enhanced heat transport via high- LM fillers above the percolation threshold. Despite the high filler loading, the RSH-produced emulsion retained remarkably high fluidity, with a relatively low viscosity increase and no yield stress, demonstrating its potential as a circulatable heat transfer fluid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210168PMC
http://dx.doi.org/10.1021/acsomega.3c00487DOI Listing

Publication Analysis

Top Keywords

heat transfer
16
liquid metal
8
conductive particles
8
carrier fluid
8
thermal conductivity
8
transfer fluid
8
high fluidity
8
high
6
heat
5
transfer
5

Similar Publications

Precession modulates the poleward expansion of atmospheric circulation to the Arctic Ocean.

Nat Commun

January 2025

Centre for Marine Magnetism (CM2, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.

Under sustained global warming, Arctic climate is projected to become more responsive to changes in North Pacific meridional heat transport as a result of teleconnections between low and high latitudes, but the underlying mechanisms remain poorly understood. Here, we reconstruct subarctic humidity changes over the past 400 kyr to investigate the role of low-to-high latitude interactions in regulating Arctic hydroclimate. Our reconstruction is based on precipitation-driven sediment input variations in the Subarctic North Pacific (SANP), which reveal a strong precessional cycle in subarctic humidity under the relatively low eccentricity variations that dominated the past four glacial-interglacial cycles.

View Article and Find Full Text PDF

Levilactobacillus brevis YT108, identified for its ability to metabolize prebiotic xylo-oligosaccharides (XOS), emerges as a candidate for probiotic use in synbiotic food formulations. This study aimed to investigate the metabolic and genomic traits associated with XOS metabolism in YT108 and to assess its probiotic attributes through whole genome sequencing and in vitro assays. Strain YT108 exhibited robust growth kinetics on XOS as the sole carbon source, with a growth profile comparable to that on glucose, achieving a pH reduction to 4.

View Article and Find Full Text PDF

Encapsulation of Oil Droplets Using Film-Forming Janus Nanoparticles.

Langmuir

January 2025

School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, New South Wales 2006, Australia.

Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate--butyl acrylate) lobe were synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5-500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt).

View Article and Find Full Text PDF

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Estimating in vivo power deposition density in thermotherapies based on ultrasound thermal strain imaging.

J Acoust Soc Am

January 2025

Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

In thermal therapies, accurate estimation of in-tissue power deposition density (PDD) is essential for predicting temperature distributions over time or regularizing temperature imaging. Based on our previous work on ultrasound thermometry, namely, multi-thread thermal strain imaging (MT-TSI), this work develops an in vivo PDD estimation method. Specifically, by combining the TSI model infinitesimal echo strain filter with the bio-heat transfer theory (the Pennes equation), a finite-difference time-domain model is established to allow online extraction of the PDD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!