Lauryl alcohol, a natural compound found in plants and other organisms, is widely used to make surfactants, food, and pharmaceuticals. GZM, a plant protection preparation with lauryl alcohol as its major component is thought to establish a physical barrier on the plant surface, but its physiological functions are unknown. Here, we show that GZM improves the performance of peanut () plants in both the laboratory and the field. We demonstrate that the treatment with GZM or lauryl alcohol raises the contents of several specific lysophospholipids and induces the biosynthesis of phenylpropanoids, flavonoids, and wax in various plant species. In the field, GZM improves crop immunity, yield, and quality. In addition, GZM and lauryl alcohol can inhibit the growth of some pathogenic fungi. Our findings provide insights into the physiological and biological effects of GZM treatment on plants and show that GZM and lauryl alcohol are promising preparations in agricultural production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212988PMC
http://dx.doi.org/10.1016/j.isci.2023.106819DOI Listing

Publication Analysis

Top Keywords

lauryl alcohol
20
gzm improves
12
gzm lauryl
12
plant protection
8
protection preparation
8
gzm
8
improves crop
8
crop immunity
8
immunity yield
8
yield quality
8

Similar Publications

Adding of vegetable oils to skincare products or the use of plant oils for oil care is a current trend. Therefore, the safety and functionality of vegetable oils are of great concern to consumers and cosmetics manufacturers. This study focused on three types of vegetable oils: sunflower oil (SO), andiroba oil (AO) and hydrogenated olive oil (HOO).

View Article and Find Full Text PDF

The WRINKLED1 (WRI1) transcription factor controls carbon flow in plants through regulating the expression of glycolysis and fatty acid biosynthesis genes. The role of Gossypium hirsutum WRINKLED1 (GhWRI1) in seed-oil accumulation still needs to be explored. Multiple sequence alignment of WRI1 proteins confirmed the presence of two conserved AP2 domains.

View Article and Find Full Text PDF

Synergy of sodium dodecyl sulfate and citric acid in removing bacterial biofilms in hydroponic farming facilities.

Lett Appl Microbiol

December 2024

Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Republic of Singapore.

This research explored various concentrations of sodium dodecyl sulfate (SDS) and citric acid (CA), both individually and in combination, to assess their effectiveness against Salmonella biofilms in hydroponic agriculture systems. Results demonstrated that a combined sanitizer of 0.1% SDS (1.

View Article and Find Full Text PDF

Amphiphilicity is an important property for drug development and self-assembly. This paper introduces a general approach based on a simple fatty alcohol (dodecanol) membrane model that can be used to quantify the amphiphilicity of small molecules that are in good agreement with experimental surface tension data. By applying the model to a systematic series of compounds, it was possible to elucidate the effect of different motifs on amphiphilicity.

View Article and Find Full Text PDF

Background: The ongoing emergence and spread of drug-resistant pathogens necessitate urgent solutions. Natural products from bacterial sources are recognized as a promising source of antibiotics. This study aimed to isolate and characterize soil microorganisms from extremely hot environments and to screen their secondary metabolites for antibacterial activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!