Synaptic vesicle (SV) clusters, which reportedly result from synapsin's capacity to undergo liquid-liquid phase separation (LLPS), constitute the structural basis for neurotransmission. Although these clusters contain various endocytic accessory proteins, how endocytic proteins accumulate in SV clusters remains unknown. Here, we report that endophilin A1 (EndoA1), the endocytic scaffold protein, undergoes LLPS under physiologically relevant concentrations at presynaptic terminals. On heterologous expression, EndoA1 facilitates the formation of synapsin condensates and accumulates in SV-like vesicle clusters via synapsin. Moreover, EndoA1 condensates recruit endocytic proteins such as dynamin 1, amphiphysin, and intersectin 1, none of which are recruited in vesicle clusters by synapsin. In cultured neurons, like synapsin, EndoA1 is compartmentalized in SV clusters through LLPS, exhibiting activity-dependent dispersion/reassembly cycles. Thus, beyond its essential function in SV endocytosis, EndoA1 serves an additional structural function by undergoing LLPS, thereby accumulating various endocytic proteins in dynamic SV clusters in concert with synapsin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209458 | PMC |
http://dx.doi.org/10.1016/j.isci.2023.106826 | DOI Listing |
1The brains of Parkinson's disease (PD) patients are characterized by the presence of Lewy body inclusions enriched with fibrillar forms of the presynaptic protein alpha-synuclein (aSyn). Despite related evidence that Lewy pathology spreads across different brain regions as the disease progresses, the underlying mechanism hence the fundamental cause of PD progression is unknown. The propagation of aSyn pathology is thought to potentially occur through the release of aSyn aggregates from diseased neurons, their uptake by neighboring healthy neurons via endocytosis, and subsequent seeding of native aSyn aggregation in the cytosol.
View Article and Find Full Text PDFTo inhibit endocytic entry of some viruses, cells promote acidification of endosomes by expressing the short isoform of human nuclear receptor 7 (NCOA7) which increases activity of vacuolar ATPase (V-ATPase). While we found that HIV-1 infection of primary T cells led to acidification of endosomes, NCOA7 levels were only marginally affected. Contrastingly, levels of the 50 kDa form of the sodium/hydrogen exchanger 6 (NHE6) were greatly reduced.
View Article and Find Full Text PDFUnlabelled: Endocytic recycling of transmembrane proteins is essential to cell signaling, ligand uptake, protein traffic and degradation. The intracellular domains of many transmembrane proteins are ubiquitylated, which promotes their internalization by clathrin-mediated endocytosis. How might this enhanced internalization impact endocytic uptake of transmembrane proteins that lack ubiquitylation? Recent work demonstrates that diverse transmembrane proteins compete for space within highly crowded endocytic structures, suggesting that enhanced internalization of one group of transmembrane proteins may come at the expense of other groups.
View Article and Find Full Text PDFLive human brain tissues provide unique opportunities for understanding the physiology and pathophysiology of synaptic transmission. Investigations have been limited to anatomy, electrophysiology, and protein localization-while crucial parameters such as synaptic vesicle dynamics were not visualized. Here we utilize zap-and-freeze time-resolved electron microscopy to overcome this hurdle.
View Article and Find Full Text PDFPLoS Biol
January 2025
Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America.
Microtubule nucleation is important for microtubule organization in dendrites and for neuronal injury responses. The core nucleation protein, γTubulin (γTub), is localized to dendrite branch points in Drosophila sensory neurons by Wnt receptors and scaffolding proteins on endosomes. However, whether Wnt ligands are important is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!