Stomatopods are well studied for their unique visual systems, which can consist of up to 16 different photoreceptor types and 33 opsin proteins expressed in the adults of some species. The light-sensing abilities of larval stomatopods are comparatively less well understood with limited information about the opsin repertoire of these early-life stages. Early work has suggested that larval stomatopods may not possess the extensive light detection abilities found in their adult counterparts. However, recent studies have shown that these larvae may have more complex photosensory systems than previously thought. To examine this idea at the molecular level, we characterized the expression of putative light-absorbing opsins across developmental stages, from embryo to adult, in the stomatopod species using transcriptomic methods with a special focus on ecological and physiological transition periods. Opsin expression during the transition from the larval to the adult stage was further characterized in the species . Opsin transcripts from short, middle, and long wavelength-sensitive clades were found in both species, and analysis of spectral tuning sites suggested differences in absorbance within these clades. This is the first study to document the changes in opsin repertoire across development in stomatopods, providing novel evidence for light detection across the visual spectrum in larvae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220389PMC
http://dx.doi.org/10.1002/ece3.10121DOI Listing

Publication Analysis

Top Keywords

opsin expression
8
development stomatopods
8
larval stomatopods
8
opsin repertoire
8
light detection
8
opsin
6
increasing complexity
4
complexity opsin
4
expression stomatopod
4
stomatopod development
4

Similar Publications

Discovery of non-retinoid compounds that suppress the pathogenic effects of misfolded rhodopsin in a mouse model of retinitis pigmentosa.

PLoS Biol

January 2025

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America.

Pathogenic mutations that cause rhodopsin misfolding lead to a spectrum of currently untreatable blinding diseases collectively termed retinitis pigmentosa. Small molecules to correct rhodopsin misfolding are therefore urgently needed. In this study, we utilized virtual screening to search for drug-like molecules that bind to the orthosteric site of rod opsin and improve its folding and trafficking.

View Article and Find Full Text PDF

Sub-lethal pesticide exposure interferes with honey bee memory of learnt colours.

Sci Total Environ

January 2025

Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, Istanbul, Türkiye; USDA/ARS/WRRC, Invasive Species and Pollinator Health Research Unit, Davis, CA 95616, USA. Electronic address:

Neonicotinoid pesticide use has increased around the world despite accumulating evidence of their potential detrimental sub-lethal effects on the behaviour and physiology of bees, and its contribution to the global decline in bee health. Whilst flower colour is considered as one of the most important signals for foraging honey bees (Apis mellifera), the effects of pesticides on colour vision and memory retention in a natural setting remain unknown. We trained free flying honey bee foragers by presenting artificial yellow flower feeder, to an unscented artificial flower patch with 6 different flower colours to investigate if sub-lethal levels of imidacloprid would disrupt the acquired association made between the yellow flower colour from the feeder and food reward.

View Article and Find Full Text PDF

Mechanisms of Rhodopsin-Related Inherited Retinal Degeneration and Pharmacological Treatment Strategies.

Cells

January 2025

Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.

Retinitis pigmentosa (RP) is a hereditary disease characterized by progressive vision loss ultimately leading to blindness. This condition is initiated by mutations in genes expressed in retinal cells, resulting in the degeneration of rod photoreceptors, which is subsequently followed by the loss of cone photoreceptors. Mutations in various genes expressed in the retina are associated with RP.

View Article and Find Full Text PDF

Transcriptomic Characterization of Phototransduction Genes of the Asian Citrus Psyllid Kuwayama.

Insects

December 2024

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.

Opsin plays a regulatory role in phototaxis of , functioning as the initial station in the phototransduction cascade. Our study aimed to explore the phototransduction pathway to identify elicitors that may enhance phototaxis in the future. The RNAi technique was employed to inhibit gene expression, followed by RNA-Seq analysis to identify phototransduction genes.

View Article and Find Full Text PDF

Methylmercury-induced visual deficits involve loss of GABAergic cells in the zebrafish embryo retina.

Sci Total Environ

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China. Electronic address:

Methylmercury (MeHg) is a neurotoxicant with adverse effects on visual systems from fish to man. Clinical signs of visual deficits including color-vision alterations, visual field constriction and blindness have been frequently identified in patients and affected animals following acute and chronic exposure to MeHg. However, it is still unclear whether MeHg causes developmental defects in the eye.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!