Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It has been reported that the MDCK cell tight junction shows stochastic fluctuation and forms the interdigitation structure, but the mechanism of the pattern formation remains to be elucidated. In the present study, we first quantified the shape of the cell-cell boundary at the initial phase of pattern formation. We found that the Fourier transform of the boundary shape shows linearity in the log-log plot, indicating the existence of scaling. Next, we tested several working hypotheses and found that the Edwards-Wilkinson equation, which consists of stochastic movement and boundary shortening, can reproduce the scaling property. Next, we examined the molecular nature of stochastic movement and found that myosin light chain puncta may be responsible. Quantification of boundary shortening indicates that mechanical property change may also play some role. Physiological meaning and scaling properties of the cell-cell boundary are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214399 | PMC |
http://dx.doi.org/10.1016/j.isci.2023.106594 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!