Inactivation of CACNA1H induces cell apoptosis by initiating endoplasmic reticulum stress in glioma.

Transl Neurosci

Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, No. 324, Jingwuweiqi Road, Jinan, 250021, China.

Published: January 2023

Background: Ca channels are abnormally expressed in various tumor cells and are involved in the progression of human glioma. Here, we explored the role of a calcium channel, voltage-dependent, T-type, alpha 1H subunit (CACNA1H), which encodes T-type Ca channel Cav3.2 in glioma cells.

Methods: Cell viability and apoptosis were detected using cell-counting kit-8 and flow cytometry, respectively. The expression of target protein was determined using western blot analysis.

Results: Cell viability of U251 cells was inhibited significantly after the knockdown of CACNA1H. The apoptosis of U251 cells was enhanced significantly after the knockdown of CACNA1H. Importantly, knockdown of CACNA1H decreased the levels of p-PERK, GRP78, CHOP, and ATF6, indicating that CACNA1H knockdown activated endoplasmic reticulum stress (ERS) in U251 cells. In addition, T-type Ca channel inhibitor NNC55-0396 also induced apoptosis through the activation of ERS in U251 cells. ERS inhibitor UR906 could block CACNA1H inhibitor ABT-639-induced apoptosis.

Conclusion: Suppression of CACNA1H activated the ERS and thus induced apoptosis in glioma cells. T-type Ca channel inhibitors ABT-639 and NNC55-0396 also induced apoptosis through ERS in glioma cells. Our data highlighted the effect of CACNA1H as an oncogenic gene in human glioma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224624PMC
http://dx.doi.org/10.1515/tnsci-2022-0285DOI Listing

Publication Analysis

Top Keywords

u251 cells
16
t-type channel
12
knockdown cacna1h
12
induced apoptosis
12
endoplasmic reticulum
8
reticulum stress
8
human glioma
8
cacna1h
8
cell viability
8
ers u251
8

Similar Publications

Glioblastoma is considered the most malignant central nervous system tumor. This study aimed to investigate effects of latent transforming growth factor-β binding protein-2 (LTBP2) on glioblastoma growth and associated mechanisms. LTBP2 gene transcription in glioblastoma was determined using RT-PCR.

View Article and Find Full Text PDF

Raddeanin A (RA) Inhibited EMT and Stemness in Glioblastoma via downregulating Skp2.

J Cancer

January 2025

Cancer Prevention and Treatment Institute of Chengdu, Department of Neurosurgery, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611137, China.

Glioblastoma (GBM), notorious for its poor prognosis, stands as a formidable challenge within the central nervous system tumor category, primarily due to its intricate pathology that encompasses stemness and the epithelial-mesenchymal transition (EMT). The ubiquity of S phase kinase-associated protein 2 (Skp2) overexpression in GBM, a protein implicated in both EMT and stemness traits, correlates with increased drug resistance, elevated tumor grades, and adverse outcomes. This investigation delves into the impact of Raddeanin A (RA), a triterpenoid compound extracted from Anemone raddeana Regel, on GBM, with a special focus on its influence over Skp2 expression levels.

View Article and Find Full Text PDF

Background: Cold inducible RNA-binding protein (CIRP) is an important danger-associated molecular pattern involved in tissue-specific and systemic inflammation related to inflammation and Alzheimer's disease (AD). However, the precise roles and mechanism of CIRP in the functional changes in astrocytes during the development of AD are still unknown. This study aimed to assess gene expression alterations in astrocytes after they overexpress CIRP (oe-CIRP) and to explore the relationship between abnormal CIRP expression and AD.

View Article and Find Full Text PDF

Morusin regulates the migration of M2 macrophages and GBM cells through the CCL4-CCR5 axis.

Int Immunopharmacol

December 2024

School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China. Electronic address:

Background: Glioblastoma (GBM) is the most aggressive tumor in the central nervous system. Tumor-associated macrophage (TAMs) represent a major immune cell population in tumor microenvironment (TME) and exert immunosuppressive effects that impede GBM treatment. Morusin is a flavonoid extracted from mulberry trees and has anti-tumor properties against various cancers, including glioma.

View Article and Find Full Text PDF

Comprehensive Analysis of Bulk RNA-Seq and Single-Cell RNA-Seq Data Unveils Sevoflurane-Induced Neurotoxicity Through SLC7A11-Associated Ferroptosis.

J Cell Mol Med

December 2024

Department of Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China.

Sevoflurane's potential impact on cognitive function and neurodevelopment, especially in susceptible populations such as infants and the elderly, has raised widespread concern. This study focuses on how sevoflurane induces ferroptosis in astrocytes and identifies solute carrier family 7 member 11 (SLC7A11) as a mediator of ferroptosis, providing new insights into sevoflurane-related neurotoxic pathways. We analysed single-cell sequencing (scRNA-seq) data from sevoflurane-exposed mice and control mice, supplemented with bulk RNA-seq data, to assess gene expression alterations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!