AI Article Synopsis

  • Gut microbiota plays an essential role in the survival of primates, and understanding its differences in captive versus wild environments is important for conservation efforts.
  • The study on Francois' langurs found significant variations in gut microbiota composition, with captive langurs having higher alpha diversity but different proportions of key bacterial phyla (lower Firmicutes and higher Bacteroidetes).
  • Dietary differences between wild (more fiber-rich foods) and captive (more simple carbohydrates) langurs may explain these variations, emphasizing the impact of captivity on microbiota and the need for tailored diets in conservation practices.

Article Abstract

Gut microbiota is crucial to primate survival. Data on the gut microbiota of captive and wild animals can provide a physiological and ecological basis for the conservation of rare and endangered species. To study the effect of captivity on the gut microbiota, we examine the difference in the gut microbiota composition between captive and wild Francois' langurs (), using 16S rRNA sequencing technology. The results showed that the composition of the gut microbiota of captive and wild langurs was characterized by Firmicutes (51.93 ± 10.07% vs. 76.15 ± 8.37%) and Bacteroidetes (32.43 ± 10.00% vs. 4.82 ± 1.41%) at the phylum level and was characterized by Oscillospiraceae (15.80 ± 5.19% vs. 30.21 ± 4.87%) at the family level. The alpha diversity of gut microbiota in captive langurs was higher than those in wild, such as the Shannon index (4.45 ± 0.33 vs. 3.98 ± 0.19, < 0.001) and Simpson index (35.11 ± 15.63 vs. 19.02 ± 4.87, < 0.001). Principal coordinates analysis (PCoA) results showed significant differences in the composition of gut microbiota between captive and wild langurs at both the phylum and family levels (weight UniFrac algorithm, phylum level: = 0.748, = 0.001; family level: = 0.685, = 0.001). The relative abundance of Firmicutes (51.93 ± 10.07%) in captive langurs was lower than that of wild langurs (76.15 ± 8.37%), and the relative abundance of Bacteroidetes (32.43 ± 10.00%) in captive langurs was higher than that of wild (4.82 ± 1.41%). Our study concludes that dietary composition could be a crucial determinant in shaping the gut microbiota of langurs because more fiber-rich foods used by the wild langurs could increase the abundance of Firmicutes, and more simple carbohydrate-rich foods consumed by the captive langurs increase the abundance of Bacteroidetes. We highlight the importance of captivity on the gut microbiota and the need to consider the gut microbiota in animal provision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10218129PMC
http://dx.doi.org/10.3389/fmicb.2023.1166688DOI Listing

Publication Analysis

Top Keywords

gut microbiota
44
microbiota captive
16
captive wild
16
wild langurs
16
captive langurs
16
gut
11
microbiota
11
langurs
11
captive
8
wild
8

Similar Publications

Backgrounds: Abuse of feed supplement can cause oxidative stress and inflammatory responses in Gallus gallus. Synbiotics are composed of prebiotics and probiotics and it possess huge application potentials in the treatment of animal diseases.

Methods: This study examined the effect of d-tagatose on the probiotic properties of L.

View Article and Find Full Text PDF

Chlorella vulgaris has antioxidant, antimicrobial, and anti-inflammatory properties, as well as the probiotic that is important for keeping the intestinal microbiota balanced. The objective was to test the impact of supplementation with microalgae and/or probiotics on broiler chickens' performance, immunity, and intestinal microbiota. The experimental design was in randomized blocks in a 4x2 factorial scheme, with four levels of inclusion of C.

View Article and Find Full Text PDF

Gut microbiota and its impact on critical illness.

Curr Opin Crit Care

January 2025

Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS).

Purpose Of Review: This narrative review discusses the mechanisms connecting gut dysbiosis to adverse clinical outcomes in critically ill patients and explores potential therapeutic strategies.

Recent Findings: In recent years, the study of microbiota in ICUs has gained attention because of its potential effects on patient outcomes. Critically ill patients often face severe conditions, which can compromise their immune systems and lead to opportunistic infections from bacteria typically harmless to healthy individuals.

View Article and Find Full Text PDF

Background And Aims: Hepatitis B virus (HBV) is prevalent worldwide and is difficult to eradicate. Current treatment strategies for chronic hepatitis B ultimately seek to achieve functional cure (FC); however, the factors contributing to FC remain unclear. We aimed to investigate the gut microbiota profiles of patients with chronic hepatitis B who achieved FC.

View Article and Find Full Text PDF

Purpose Of Review: Recent research underscores the significant influence of the skin and gut microbiota on melanoma and nonmelanoma skin cancer (NMSC) development and treatment outcomes. This review aims to synthesize current findings on how microbiota modulates immune responses, particularly enhancing the efficacy of immunotherapies such as immune checkpoint inhibitors (ICIs).

Recent Findings: The microbiota's impact on skin cancer is multifaceted, involving immune modulation, inflammation, and metabolic interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!