Fluorescent nanodiamonds, that is, those containing optically active defects, have attracted interest for their ability to be used as qubits; for imaging; and as sensors for spin, stress, and temperature. One of the most commonly studied nanodiamond color centers is the nitrogen vacancy. However, there is strong interest in discovering other impurity centers that provide localized midband gap transitions. Noble gas atoms have garnered attention since they have been discovered within nanodiamonds produced through high-pressure-high-temperature laser-heated diamond anvil cell synthesis methods, where they are commonly used as hydrostatic pressure media. Noble gas atoms that exist in macrosized natural or synthetic diamonds have been shown to be able to form color centers. This research uses density functional theory and cluster models to systematically study the localized electronic structure for group VIII impurities of nanodiamond, including helium, neon, argon, krypton, and xenon. An in-depth examination of the interaction between the noble gas atom and diamond lattice has been carried out. The changes to the vibrational and UV/vis absorption spectra have been analyzed. It was determined that the energetically preferred geometry is dependent on the atom size. Most noble gas defects are stabilized within the nanodiamond lattice and exist in tetrahedral interstitial positions, except for the largest noble gas studied in this work, Xe, which was determined to prefer a substitutional configuration. Both Kr and Xe are expected to be able to manifest visible/near-IR optical responses when included in the diamond lattice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214509PMC
http://dx.doi.org/10.1021/acsphyschemau.2c00072DOI Listing

Publication Analysis

Top Keywords

noble gas
20
color centers
8
gas atoms
8
diamond lattice
8
noble
5
gas
5
electronic structures
4
structures spectroscopic
4
spectroscopic signatures
4
signatures noble-gas-doped
4

Similar Publications

Noble gas transport through geologic media has important applications in the prediction and characterization of measured gas signatures related to underground nuclear explosions (UNEs). Retarding processes such as adsorption can cause significant species fractionation of radionuclide gases, which has implications for measured and predicted signatures used to distinguish radioxenon originating from civilian nuclear facilities or from UNEs. Accounting for the effects of variable water saturation in geologic media on tracer transport is one of the most challenging aspects of modeling gas transport because there is no unifying relationship for the associated tortuosity changes between different rock types, and reactive transport processes such as adsorption that are affected by the presence of water likewise behave differently between gas species.

View Article and Find Full Text PDF

A Regiospecific Co-Assembly Method to Functionalize Ordered Mesoporous Metal Oxides with Customizable Noble Metal Nanocrystals.

ACS Cent Sci

December 2024

Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.

An efficient regiospecific co-assembly (RSCA) strategy is developed for general synthesis of mesoporous metal oxides with pore walls precisely decorated by highly dispersed noble metal nanocrystals with customized parameters (diameter and composition). It features the rational utilization of the specific interactions between hydrophilic molecular precursors, hydrophobic noble metal nanocrystals, and amphiphilic block copolymers, to achieve regiospecific co-assembly as confirmed by molecular dynamics simulations. Through this RSCA strategy, we achieved a controllable synthesis of a variety of functional mesoporous metal oxide composites (e.

View Article and Find Full Text PDF

Today, air pollution is a global environmental problem. A huge amount of explosive and combustible gas emissions that negatively affect nature and human health. Gas sensors are one of the ways to prevent this impact.

View Article and Find Full Text PDF

Over the past decade, there has been considerable attention on mitigating enteric methane (CH) emissions from ruminants through the utilization of antimethanogenic feed additives (AMFA). Administered in small quantities, these additives demonstrate potential for substantial reductions of methanogenesis. Mathematical models play a crucial role in comprehending and predicting the quantitative impact of AMFA on enteric CH emissions across diverse diets and production systems.

View Article and Find Full Text PDF

Graphene Functionalization by O, H, and Ar Plasma Treatments for Improved NH Gas Sensing.

ACS Appl Mater Interfaces

December 2024

Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.

Graphene-based materials have gained attention for their promise in various applications owing to their two-dimensional structure. Functionalizing the graphene surface can help realize materials with noble properties. In this study, graphene was functionalized by plasma treatment in O, H, and Ar environments, and the effects on the NH gas-sensing performance were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!