Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Over the past two decades, there have been significant advancements in the realm of transcriptomics, or the study of genes and their expression. Modern RNA sequencing technologies and high-performance computing are creating a "big data" revolution that provides new opportunities to explore the interactions between cereals and pathogens that affect grain yield and food safety. These data are being used to annotate genes and gene variants, as well as identify differentially expressed genes and create global gene co-expression networks. Moreover, these data can unravel the complex interactions between pathogen and host and identify genes and pathways involved in these interactions. This information can then be used for disease mitigation and the development of crops with superior resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3159-1_9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!