The endogenetic biochar-derived dissolved organic matter (BDOM) might interact with pollutants in the environment. In this study, tetracycline (TC) was selected as the representative pollutant, and corn straw biochar (pyrolyzed at 300 °C) was used as the adsorbent. Through batch experiments and microscopic characterization, the releasing kinetics of BDOM and its effect on TC adsorption on biochar were investigated. The results showed that BDOM with weaker aromaticity and higher molecular weight was preferentially released. BDOM release led to the decrease of specific surface area (from 4.02 to 1.83 m/g), mesopore number, and aromaticity of biochar (H/C increased from 0.80 to 0.91) and consequently weakened the pore filling of TC on biochar, hydrophobic interaction, and π-π EDA (electron donor receptor) interaction between biochar and TC. In addition, the released BDOM could form a complex with TC in solution to prevent TC adsorption on biochar. Overall, the change in the structural properties of biochar caused by BDOM release had a greater impact on the inhibition of TC adsorption than that of BDOM and TC complexation in this study. Through EEM-PRARFAC, BDOM contained about 63% humic acid-like fluorescent component and 37% tryptophan-like fluorescent component; the former (logK values were 7.31 and 6.48, respectively) had a stronger binding strength with TC than the latter (logK was 6.45). The findings of this study could provide some useful evidence for the removal of organic pollutants in soil and water environments and biochar application in pollution remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-27847-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!