Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229517PMC
http://dx.doi.org/10.1186/s40529-023-00386-9DOI Listing

Publication Analysis

Top Keywords

correction methylc‑analyzer
4
methylc‑analyzer comprehensive
4
comprehensive downstream
4
downstream pipeline
4
pipeline analysis
4
analysis genome‑wide
4
genome‑wide dna
4
dna methylation
4
correction
1
comprehensive
1

Similar Publications

Objective: The potential of robot-assisted (RA) single-position (SP) lateral lumbar interbody fusion (LLIF) warrants further investigation. This study aimed to assess the efficacy of RA-SP-LLIF in improving both clinical and radiographic outcomes in patients undergoing lumbar spinal fusion surgery.

Methods: A total of 59 patients underwent either RA-SP-LLIF (n = 31 cases) or traditional LLIF (n = 28 cases).

View Article and Find Full Text PDF

Background: Perinatal mental health problems, such as anxiety, stress, and depression, warrant particularly close monitoring and intervention, but they are often unaddressed in both obstetric and psychiatric clinics, with limited accessibility and treatment resources. Mobile health interventions may provide an effective and more accessible solution for addressing perinatal mental health. Development and evaluation of a mobile mental health intervention specifically for pregnant women are warranted.

View Article and Find Full Text PDF

GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice.

Adv Sci (Weinh)

January 2025

Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.

Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.

View Article and Find Full Text PDF

Motion-Compensated Multishot Pancreatic Diffusion-Weighted Imaging With Deep Learning-Based Denoising.

Invest Radiol

January 2025

From the Department of Radiology, Stanford University, Stanford, CA (K.W., M.J.M., A.M.L., A.B.S., A.J.H., D.B.E., R.L.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (K.W.); GE HealthCare, Houston, TX (X.W.); GE HealthCare, Boston, MA (A.G.); and GE HealthCare, Menlo Park, CA (P.L.).

Objectives: Pancreatic diffusion-weighted imaging (DWI) has numerous clinical applications, but conventional single-shot methods suffer from off resonance-induced artifacts like distortion and blurring while cardiovascular motion-induced phase inconsistency leads to quantitative errors and signal loss, limiting its utility. Multishot DWI (msDWI) offers reduced image distortion and blurring relative to single-shot methods but increases sensitivity to motion artifacts. Motion-compensated diffusion-encoding gradients (MCGs) reduce motion artifacts and could improve motion robustness of msDWI but come with the cost of extended echo time, further reducing signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!