Trophoblasts are significant components of the placenta and play crucial roles in maternal-fetal crosstalk. Adequate trophoblast migration and invasion are essential for embryo implantation and healthy pregnancy. Ubiquitin-specific protease 7 (USP7), a member of the deubiquitinating enzyme family, regulates the processes of migration and invasion in multiple tumor cells. However, the effects of USP7 on trophoblasts and its possible mechanism in the development of recurrent spontaneous abortion (RSA) are still unclear. In this study, we analyzed the expression of USP7 in villous tissues obtained from RSA patients and healthy controls, and then GNE-6776 (a USP7-specific inhibitor) and USP7 siRNA were used in a trophoblast cell line, HTR-8/SVneo, to further assess the effect of USP7 on the biological function of trophoblasts. Our results provide convincing evidence that USP7 is downregulated in the placental villous tissues of RSA patients. USP7 was found to have a crucial role in the proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition (EMT) process of trophoblast cells. Further experiments revealed that USP7 directly interacted with the enhancer of zeste homolog 2 (EZH2) and regulated the Wnt/β-catenin signaling pathway in trophoblasts. Taken together, these findings indicate the vital role of USP7 in regulating trophoblast proliferation, migration and invasion, thus affecting the pathogenesis of RSA, providing new insights into the important role of USP7 in the maternal-fetal interface.

Download full-text PDF

Source
http://dx.doi.org/10.1093/biolre/ioad053DOI Listing

Publication Analysis

Top Keywords

migration invasion
20
usp7
10
ubiquitin-specific protease
8
recurrent spontaneous
8
spontaneous abortion
8
enhancer zeste
8
zeste homolog
8
trophoblast proliferation
8
proliferation apoptosis
8
apoptosis migration
8

Similar Publications

Background: Cutaneous melanoma is one of the most invasive and lethal skin malignant tumors. Compared to primary melanoma, metastatic melanoma (MM) presents poorer treatment outcomes and a higher mortality rate. The tumor microenvironment (TME) plays a critical role in MM progression and immunotherapy resistance.

View Article and Find Full Text PDF

Background: The dysregulation of ribosome biogenesis has been extensively identified in various cancers, making it emerge as a hallmark of malignant cells. This highlights the potential of targeting ribosome biogenesis as an effective approach for treating cancer patients. Although chemotherapy drugs including doxorubicin and cisplatin often target ribosome biogenesis to induce DNA damage or inhibit tumor cell proliferation, they are associated with significant side effects.

View Article and Find Full Text PDF

CPSF4-mediated regulation of alternative splicing of HMG20B facilitates the progression of triple-negative breast cancer.

J Transl Med

December 2024

Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China.

Background: Aberrant alternative splicing (AS) contributes to tumor progression. A crucial component of AS is cleavage and polyadenylation specificity factor 4 (CPSF4). It remains unclear whether CPSF4 plays a role in triple-negative breast cancer (TNBC) progression through AS regulation.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear.

View Article and Find Full Text PDF

Breast cancer (BRCA) is one of the pivotal causes of female death worldwide. And the morbidity and mortality of breast cancer have increased rapidly. Immune checkpoints are important to maintain immune tolerance and are regarded as important therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!