A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Systematic Review on Lower-Limb Industrial Exoskeletons: Evaluation Methods, Evidence, and Future Directions. | LitMetric

A Systematic Review on Lower-Limb Industrial Exoskeletons: Evaluation Methods, Evidence, and Future Directions.

Ann Biomed Eng

Biomechanics and Ergonomics Lab, Industrial and Systems Engineering Department, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY, 14623, USA.

Published: August 2023

Industrial tasks that involve frequent sitting/standing transitions and squatting activities can benefit from lower-limb industrial exoskeletons; however, their use is not as widespread as their upper-body counterparts. In this review, we examined 23 articles that evaluated the effects of using Wearable Chair (WC) and Squat-assist (SA) exoskeletons. Evaluations mainly included assessment of muscular demands in the thigh, shank, and upper/lower back regions. Both types of devices were found to lessen muscular demands in the lower body by 30-90%. WCs also reduced low-back demands (~ 37%) and plantar pressure (54-80%) but caused discomfort/unsafe feeling in participants. To generalize outcomes, we suggest standardizing approaches used for evaluating the devices. Along with addressing low adoption through design upgrades (e.g., ground and body supports/attachments), we recommend that researchers thoroughly evaluate temporal effects on muscle fatigue, metabolic rate, and stability of wearers. Although lower-limb exoskeletons were found to be beneficial, discrepancies in experimental protocols (posture/task/measures) were discovered. We also suggest simulating more realistic conditions, such as walking/sitting interchangeability for WCs and lifting loads for SA devices. The presented outcomes could help improve the design/evaluation approaches, and implementation of lower limb wearable devices across industries.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-023-03242-wDOI Listing

Publication Analysis

Top Keywords

lower-limb industrial
8
industrial exoskeletons
8
muscular demands
8
systematic review
4
review lower-limb
4
exoskeletons
4
exoskeletons evaluation
4
evaluation methods
4
methods evidence
4
evidence future
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!