Terpenes constitute the largest class of natural products. Their skeletons are formed by terpene cyclases (TCs) from acyclic oligoprenyl diphosphates through sophisticated enzymatic conversions. These enzyme reactions start with substrate ionization through diphosphate abstraction, followed by a cascade reaction via cationic intermediates. Based on isotopic-labelling experiments in combination with a computational study, the cyclization mechanism for sodorifen, a highly methylated sesquiterpene from the soil bacterium Serratia plymuthica, was resolved. A peculiar problem in its biosynthesis lies in the formation of several methyl groups from chain methylene carbons. The underlying mechanism involves a methyltransferase-mediated cyclization and unprecedented ring contraction with carbon extrusion from the chain to form a methyl group. A terpene cyclase subsequently catalyses a fragmentation into two reactive intermediates, followed by hydrogen transfers between them and recombination of the fragments by [4 + 3] cycloaddition. This study solves the intricate mechanistic problem of extra methyl group formation in sodorifen biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41557-023-01223-zDOI Listing

Publication Analysis

Top Keywords

[4 + 3] cycloaddition
8
sodorifen biosynthesis
8
methyl group
8
fragmentation [4 + 3]
4
cycloaddition sodorifen
4
biosynthesis terpenes
4
terpenes constitute
4
constitute largest
4
largest class
4
class natural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!