Background/aim: Monoclonal antibodies (mAbs) that target tumor antigens have recently been developed. Their antitumor activity is mainly achieved through antibody-dependent cellular cytotoxicity (ADCC) via effector cells such as tumor-infiltrated macrophages and natural killer (NK) cells. CpG oligodeoxynucleotides (ODNs) have potent antitumor activity and are considered to increase the tumor infiltration of macrophages and NK cells; however, a completely solubilized novel CpG-schizophyllan (SPG) complex, K3-SPG, displays more potent antitumor activity. We recently reported the significant antitumor activity of anti-glypican-1 (GPC1) mAb against GPC1-positive esophageal squamous cell carcinoma (ESCC) via ADCC. The aim of this study was to evaluate the potential synergistic antitumor activity of anti-GPC1 mAb and K3-SPG and elucidate the underlying mechanisms using a xenograft model of GPC1-positive human ESCC cells.
Materials And Methods: The established human esophageal cancer cell line TE14 was subcutaneously injected into SCID mice. Xenograft mice were treated with anti-GPC1 mAb, K3-SPG, or their combination. Antitumor activity was evaluated by measuring the tumor volume. For FACS analysis, agents were administrated, and tumors were resected 1 day after the final treatment.
Results: Anti-GPC1 mAb or K3-SPG monotherapy showed dose-dependent antitumor activity, and combination therapy with anti-GPC1 mAb and K3-SPG showed antitumor activity (p=0.0859). Flow cytometry revealed significantly increased numbers of macrophages (p=0.0133) and of the ratio of activated NK cells/total NK cells (p=0.0058) following K3-SPG or combination therapy.
Conclusion: Combination therapy with K3-SPG and anti-GPC1 mAb or another antitumor mAb may represent a new cancer treatment option acting via ADCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21873/anticanres.16410 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!