We report a facile approach to synthesize Pd-Cu nanoparticles immobilized on a Noria-GO nanocomposite for efficient nitrophenol reduction. The unique architecture of the Noria and the hydrophilic nature of GO contribute to the improved performance and structure of the resulting nanocomposite. The simple sol-immobilization approach employed NaBH as a reductant and polyvinyl alcohol as a capping agent to evenly decorate small Pd-Cu nanoparticles with a diameter of 1.4 nm on the Noria-GO surface. The prepared Pd-Cu@Noria-GO nanocomposite was utilized as a nanocatalyst in converting of nitrophenol to aminophenol using NaBH solution. Our Pd-Cu@Noria-GO nanocomposite exhibited superior catalytic efficacy with large conversion percentages, K, and K values of 95%, 0.225 min, and 225 ming, respectively. X-ray photoemission spectroscopy confirmed the oxidation state of the prepared nanoparticles, and TEM findings demonstrated the homogenous decoration of Pd-Cu NPs on the Noria-GO surface. Additionally, the durability of the Pd-Cu@Noria-GO nanocomposite shown its potential as a robust and promising material for remediating organic contaminants. Our results indicate that Pd-Cu@Noria-GO nanocomposite can be an effective and sustainable approach for mitigating the hazards associated with nitrophenols.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.116259DOI Listing

Publication Analysis

Top Keywords

pd-cu@noria-go nanocomposite
16
pd-cu nanoparticles
12
efficient nitrophenol
8
nitrophenol reduction
8
noria-go nanocomposite
8
noria-go surface
8
nanocomposite
7
noria-go
4
reduction noria-go
4
nanocomposite decorated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!