A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New insights into natural rubber biosynthesis from rubber-deficient lettuce mutants expressing goldenrod or guayule cis-prenyltransferase. | LitMetric

Lettuce produces natural rubber (NR) with an average M of > 1 million Da in laticifers, similar to NR from rubber trees. As lettuce is an annual, self-pollinating, and easily transformable plant, it is an excellent model for molecular genetic studies of NR biosynthesis. CRISPR/Cas9 mutagenesis was optimized using lettuce hairy roots, and NR-deficient lettuce was generated via bi-allelic mutations in cis-prenyltransferase (CPT). This is the first null mutant of NR deficiency in plants. In the CPT mutant, orthologous CPT counterparts from guayule (Parthenium argentatum) and goldenrod (Solidago canadensis) were expressed under a laticifer-specific promoter to examine how the average M of NR is affected. No developmental defects were observed in the NR-deficient mutants. The lettuce mutants expressing guayule and goldenrod CPT produced 1.8 and 14.5 times longer NR, respectively, than the plants of their origin. This suggests that, although goldenrod cannot synthesize a sufficiently lengthy NR, goldenrod CPT has the catalytic competence to produce high-quality NR in the cellular context of lettuce laticifers. Thus, CPT alone does not determine the length of NR. Other factors, such as substrate concentration, additional proteins, and/or the nature of protein complexes including CPT-binding proteins, influence CPT activity in determining NR length.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.18994DOI Listing

Publication Analysis

Top Keywords

natural rubber
8
lettuce mutants
8
mutants expressing
8
goldenrod cpt
8
lettuce
7
cpt
7
goldenrod
5
insights natural
4
rubber biosynthesis
4
biosynthesis rubber-deficient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!