Meiotic recombination is one of the main sources of genetic variation, a fundamental factor in the evolutionary adaptation of sexual eukaryotes. Yet, the role of variation in recombination rate and other recombination features remains underexplored. In this review, we focus on the sensitivity of recombination rates to different extrinsic and intrinsic factors. We briefly present the empirical evidence for recombination plasticity in response to environmental perturbations and/or poor genetic background and discuss theoretical models developed to explain how such plasticity could have evolved and how it can affect important population characteristics. We highlight a gap between the evidence, which comes mostly from experiments with diploids, and theory, which typically assumes haploid selection. Finally, we formulate open questions whose solving would help to outline conditions favoring recombination plasticity. This will contribute to answering the long-standing question of why sexual recombination exists despite its costs, since plastic recombination may be evolutionary advantageous even in selection regimes rejecting any non-zero constant recombination.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bies.202200237DOI Listing

Publication Analysis

Top Keywords

recombination plasticity
12
recombination
10
modeling evolution
4
evolution recombination
4
plasticity
4
plasticity prospective
4
prospective review
4
review meiotic
4
meiotic recombination
4
recombination main
4

Similar Publications

Multifunctional Graphdiyne Enables Efficient Perovskite Solar Cells via Anti-Solvent Additive Engineering.

Nanomicro Lett

January 2025

CAS Key Laboratory of Organic Solids, Institute of Chemistry, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.

Finding ways to produce dense and smooth perovskite films with negligible defects is vital for achieving high-efficiency perovskite solar cells (PSCs). Herein, we aim to enhance the quality of the perovskite films through the utilization of a multifunctional additive in the perovskite anti-solvent, a strategy referred to as anti-solvent additive engineering. Specifically, we introduce ortho-substituted-4'-(4,4″-di-tert-butyl-1,1':3',1″-terphenyl)-graphdiyne (o-TB-GDY) as an AAE additive, characterized by its sp/sp-cohybridized and highly π-conjugated structure, into the anti-solvent.

View Article and Find Full Text PDF

Exploring the dual roles of sec-dependent effectors from Candidatus Liberibacter asiaticus in immunity of citrus plants.

Plant Cell Rep

January 2025

MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.

The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.

View Article and Find Full Text PDF

Vanadium-Dependent Haloperoxidase Gene Evolution in Brown Algae: Evidence for Horizontal Gene Transfer.

Int J Mol Sci

January 2025

Key Lab of Breeding Biotechnology and Sustainable Aquaculture, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Compared with green plants, brown algae are characterized by their ability to accumulate iodine, contributing to their ecological adaptability in high-iodide coastal environments. Vanadium-dependent haloperoxidase (V-HPO) is the key enzyme for iodine synthesis. Despite its significance, the evolutionary origin of V-HPO genes remains underexplored.

View Article and Find Full Text PDF

In recent decades, the scientific community has faced a major challenge in the search for new therapies that can slow down or alleviate the process of neuronal death that accompanies neurodegenerative diseases. This study aimed to identify an effective therapy using neurotrophic factors to delay the rapid and aggressive cerebellar degeneration experienced by the Purkinje Cell Degeneration (PCD) mouse, a model of childhood-onset neurodegeneration with cerebellar atrophy (CONDCA). Initially, we analyzed the changes in the expression of several neurotrophic factors related to the degenerative process itself, identifying changes in insulin-like growth factor 1 (IGF-1) and Vascular Endothelial Growth Factor B (VEGF-B) in the affected animals.

View Article and Find Full Text PDF

: Autologous bone grafting is the first choice for reconstructive surgery in bone defects due to trauma or malignant tumors. However, there is an increasing demand for minimally invasive alternatives involving bone regeneration using artificial materials. Biomimetic materials that replicate the body's microscopic structure, such as Cellnest, are gaining attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!