Palladium-Catalyzed Thiocarbonylation of Aryl Iodides Using CO.

J Org Chem

Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China.

Published: July 2023

The first example of catalytic thiocarbonylation of aryl iodides using CO has been achieved employing a combination of PdCl and carbazole-derived phosphine ligands. Under mild conditions, a broad scope of aryl iodides were converted to the desired thioester products in the presence of aryl or alkyl thiols (33 examples, up to 96% yields). The choice of metal, ligands, and reductant were crucial for high efficiency and chemoselectivity. Moreover, this strategy provided an effective method for the late-stage functionalization of biorelevant molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.3c00643DOI Listing

Publication Analysis

Top Keywords

aryl iodides
12
thiocarbonylation aryl
8
palladium-catalyzed thiocarbonylation
4
aryl
4
iodides example
4
example catalytic
4
catalytic thiocarbonylation
4
iodides achieved
4
achieved employing
4
employing combination
4

Similar Publications

Electrolysis of -alkynyl--(formyl)anilides and sodium sulfinates on graphite electrodes delivers biologically sound 3-(sulfonyl)quinol-4-ones with moderate to good yields. The reaction is carried out in an undivided cell in the presence of silver(I) oxide with potassium iodide or sodium tetrafluoroborate as the supporting electrolyte. The reaction tolerates variously substituted anilides as well as aryl and alkyl sulfinates.

View Article and Find Full Text PDF

The nickel catalyzed multi-component cross-electrophile carbonylation which emerges as a powerful and efficient method for constructing diverse ketones has attracted increasing attention of organic chemists. However, the selectivity of this reaction poses a significant challenge. In this work, we have developed a current-regulated selective nickel-catalyzed electroreductive cross-electrophile carbonylation, which offers a direct convergent synthesis of β/γ-hydroxy ketones, which represent pivotal structural motifs found in numerous natural products, bioactive molecules, pharmaceutical compounds, and essential building blocks.

View Article and Find Full Text PDF

Efficient catalytic systems for various organic transformations in green solvents, especially water, are in great demand. Catalytically active bis-NHC complexes of palladium(II) based on imidazole-4,5-dicarboxylic acid with different lipophilicities were obtained. The synthesis of imidazolium salts was complicated by the formation of side products of nucleophilic substitution by iodide ions in the Menshutkin reaction involving alkyl iodides, which was successfully resolved by using alkyl tosylates.

View Article and Find Full Text PDF

A gold-catalyzed sulfonylation of aryl/vinyl iodides to synthesize aryl sulfones facilitated by the ligand-enabled Au(I)/Au(III) redox catalysis was developed. In the reaction, aryl sodium sulfinates or sulphinic acids can react smoothly with aryl/vinyl iodides to directly construct various aryl sulfones. The strong synthetic capabilities of sulfone synthesis are demonstrated by its easily available and handled reagents, good functional group compatibility, and late-stage application of complicated biomolecules.

View Article and Find Full Text PDF

Palladium-catalyzed carbonylation reactions of -phenylene dihalides were studied using aminoethanols as heterobifunctional ,-nucleophiles. The activity of aryl-iodide and -bromide as well as the chemoselective transformation of amine and hydroxyl functionalities were studied systematically under carbonylation conditions. Aminocarbonylation can be selectively realized under optimized conditions, enabling the formation of amide alcohols, and the challenging alkoxycarbonylation can also be proved feasible, enabling amide-ester production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!