Electrostatic Modulation of Intramolecular and Intermolecular Interactions during the Formation of an Amyloid-like Assembly.

Biochemistry

Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.

Published: June 2023

The mechanism of protein aggregation can be broadly viewed as a shift from the native-state stabilizing intramolecular to the aggregated-phase sustaining intermolecular interactions. Understanding the role of electrostatic forces on the extent of modulation of this switch has recently evolved as a topic of monumental significance as protein aggregation has lately been connected to charge modifications of an aging proteome. To decipher the distinctive role of electrostatic forces on the extremely complicated phase separation landscape, we opted for a combined in vitro-in silico approach to ascertain the structure-dynamics-stability-aggregability relationship of the functional tandem RRM domains of the ALS-related protein TDP-43 (TDP-43), under a bivariate solution condition in terms of pH and salt concentration. Under acidic pH conditions, the native TDP-43 protein creates an aggregation-prone entropically favorable partially unfolded conformational landscape due to enthalpic destabilization caused by the protonation of the buried ionizable residues and consequent overwhelming fluctuations of selective segments of the sequence leading to anti-correlated movements of the two domains of the protein. The evolved fluffy ensemble with a comparatively exposed backbone then easily interacts with incoming protein molecules in the presence of salt via typical amyloid-aggregate-like intermolecular backbone hydrogen bonds with a considerable contribution originating from the dispersion forces. Subsequent exposure to excess salt at low pH conditions expedites the aggregation process via an electrostatic screening mechanism where salt shows preferential binding to the positively charged side chain. The applied target observable-specific approach complementarity unveils the hidden information landscape of an otherwise complex process with unquestionable conviction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.3c00014DOI Listing

Publication Analysis

Top Keywords

intermolecular interactions
8
protein aggregation
8
role electrostatic
8
electrostatic forces
8
protein
6
electrostatic
4
electrostatic modulation
4
modulation intramolecular
4
intramolecular intermolecular
4
interactions formation
4

Similar Publications

Aqueous-phase phosphors are of utmost importance for a myriad of applications. However, the emission wavelengths of the current aqueous organic room-temperature phosphorescent (RTP) materials are limited to green and red bands, while the blue part is rarely reported, thus limiting the development of a full-color RTP system. Theoretically, carboxylated benzene is expected to be blue phosphorescence-emissive, but only green phosphorescence is observed in solid, due to the strong intermolecular π-π stacking that decreases the energy gap.

View Article and Find Full Text PDF

Interactions between aromatic side chains of amino acids stabilize the fold and assembly of short peptides. The aromatic π…π and C-H…π interactions have been widely explored in the design of short peptides with specific folding and aggregation patterns. In the present study, we investigated the effect of homologated phenylalanine side chains on the conformation and assembly of peptide helices through X-ray crystallographic structure determination and analysis of five pentapeptides.

View Article and Find Full Text PDF

Prodrug-based nanoassemblies are promising platforms for cancer therapy. Prodrugs typically consist of three main components: drug modules, intelligent response modules, and modification modules. However, the available modification modules are usually hydrophobic aliphatic side chains, which affect the activation efficiency of the prodrugs.

View Article and Find Full Text PDF

The coamorphous formulations have attracted increasing interest due to enhanced solubility and bioavailability, together with synergistic pharmacological effects. In this study, a ternary coamorphous system of polyphenols was successfully prepared, wherein baicalein (Bai) and resveratrol (Res) were constructed into a single-phase coamorphous system mediated by piperine (Pip). FTIR and ss C NMR spectra together with quantum chemical calculation and molecular dynamics simulation suggested Pip as a molecular bridge connected Bai and Res molecules through π-π stacking and hydrogen bonding interactions.

View Article and Find Full Text PDF

Study on the formation mechanism and effective manipulation of polymorphs and solvates in Osimertinib-Caffeic acid multi-component crystal with distinct properties.

Int J Pharm

December 2024

Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Investigating the formation mechanism and effective manipulation of multi-component crystal polymorphs is crucial for facilitating industrial drug development. Herein, five novel Osimertinib-caffeic acid forms were first strategically tailored by varying solvent selection. Theoretical analysis demonstrated this polymorphism is correlated with multiple hydrogen bond donors-acceptors within multi-component system, which provides manipulation space for reconfiguration of intermolecular interactions and structural competition, while solvent further induced or involved in hydrogen-bonded rearrangements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!