Species diversity underpins all ecosystem services that support life. Despite this recognition and the great advances in detecting biodiversity, exactly how many and which species co-occur and interact, directly or indirectly in any ecosystem is unknown. Biodiversity accounts are incomplete; taxonomically, size, habitat, mobility or rarity biased. In the ocean, the provisioning of fish, invertebrates and algae is a fundamental ecosystem service. This extracted biomass depends on a myriad of microscopic and macroscopic organisms that make up the fabric of nature and which are affected by management actions. Monitoring them all and attributing changes to management policies is daunting. Here we propose that dynamic quantitative models of species interactions can be used to link management policy and compliance with complex ecological networks. This allows managers to qualitatively identify 'interaction-indicator' species, which are highly impacted by management policies through propagation of complex ecological interactions. We ground the approach in intertidal kelp harvesting in Chile and fishers' compliance with policies. Results allow us to identify sets of species that respond to management policy and/or compliance, but which are often not included in standardized monitoring. The proposed approach aids in the design of biodiversity programmes that attempt to connect management with biodiversity change. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225859PMC
http://dx.doi.org/10.1098/rstb.2022.0189DOI Listing

Publication Analysis

Top Keywords

fabric nature
8
management policies
8
management policy
8
complex ecological
8
biodiversity change
8
biodiversity
6
management
6
species
5
monitoring fabric
4
nature allometric
4

Similar Publications

Liquid-nano-liquid interface-oriented anisotropic encapsulation.

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.

Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids.

View Article and Find Full Text PDF

Toward Large-Scale Photonic Chips Using Low-Anisotropy Thin-Film Lithium-Tantalate.

Adv Sci (Weinh)

January 2025

College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.

Photonic manipulation of large-capacity data with the advantages of high speed and low power consumption is a promising solution for explosive growth demands in the era of post-Moore. A well-developed lithium-niobate-on-insulator (LNOI) platform has been widely explored for high-performance electro-optic (EO) modulators to bridge electrical and optical signals. However, the photonic waveguides on the x-cut LNOI platform suffer serious polarization-mode conversion/coupling issues because of strong birefringence, making it hard to realize large-scale integration.

View Article and Find Full Text PDF

Skin-like bioelectronics offer a transformative technological frontier, catering to continuous and real-time yet highly imperceptible and socially discreet digital healthcare. The key technological breakthrough enabling these innovations stems from advancements in novel material synthesis, with unparalleled possibilities such as conformability, miniature footprint, and elasticity. However, existing solutions still lack desirable properties like self-adhesivity, breathability, biodegradability, transparency, and fail to offer a streamlined and scalable fabrication process.

View Article and Find Full Text PDF

Radiative Warming Glass for High-Latitude Cold Regions.

Adv Sci (Weinh)

January 2025

Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China.

Traditional window glazing, with inherently adverse energy-efficient optical properties, leads to colossal energy losses. Energy-saving glass requires a customized optical design for different climate zones. Compared with the widely researched radiative cooling technology which is preferable to be used in low-altitude hot regions; conversely in high-latitude cold regions, high solar transmittance (T) and low mid-infrared thermal emissivity (ε) are the key characteristics of high-performance radiative warming window glass, while the current low-emissivity (low-e) glass is far from ideal.

View Article and Find Full Text PDF

Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!