Synthetic self-propelled nano and microparticles have a growing appeal for targeted drug delivery, collective functionality, and manipulation at the nanoscale. However, it is challenging to control their positions and orientations under confinement, e.g., in microchannels, nozzles, and microcapillaries. This study reports on the synergistic effect of acoustic and flow-induced focusing in microfluidic nozzles. In a microchannel with a nozzle, the balance between the acoustophoretic forces and the fluid drag due to streaming flows generated by the acoustic field controls the microparticle's dynamics. This study manipulates the positions and orientations of dispersed particles and dense clusters inside the channel at a fixed frequency by tuning the acoustic intensity. The main findings are: first, this study successfully manipulates the positions and orientations of individual particles and dense clusters inside the channel at a fixed frequency by tuning the acoustic intensity. Second, when an external flow is applied, the acoustic field separates and selectively extrudes shape-anisotropic passive particles and self-propelled active nanorods. Finally, the observed phenomena are explained by multiphysics finite-element modeling. The results shed light on the control and extrusion of active particles in confined geometries and enable applications for acoustic cargo (e.g., drug) delivery, particle injection, and additive manufacturing via printed self-propelled active particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202300028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!