Characterizing long-range electric fields and built-in potentials in functional materials at nano to micrometer scales is of supreme importance for optimizing devices, e.g., the functionality of semiconductor hetero-structures or battery materials is determined by the electric fields established at interfaces which can also vary spatially. In this study, momentum-resolved four-dimensional scanning transmission electron microscopy (4D-STEM) is proposed for the quantification of these potentials and the optimization steps required to reach quantitative agreement with simulations for the GaAs/AlAs hetero-junction model system are shown. Using STEM the differences in the mean inner potentials (∆MIP) of two materials forming an interface and resulting dynamic diffraction effects have to be considered. This study shows that the measurement quality is significantly improved by precession, energy filtering and a off-zone-axis alignment of the specimen. Complementary simulations yielding a ∆MIP of 1.3 V confirm that the potential drop due to charge transfer at the intrinsic interface is ≈0.1 V, in agreement with experimental and theoretical values found in literture. These results show the feasibility of accurately measuring built-in potentials across hetero-interfaces of real device structures and its promising application for more complex interfaces of other polycrystalline materials on the nanometer scale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202300453 | DOI Listing |
ACS Nano
January 2025
School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.
View Article and Find Full Text PDFSci Adv
January 2025
James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
The time-resolved detection of mid- to far-infrared electric fields absorbed and emitted by molecules is among the most sensitive spectroscopic approaches and has the potential to transform sensing in fields such as security screening, quality control, and medical diagnostics. However, the sensitivity of the standard detection approach, which relies on encoding the far-infrared electric field into amplitude modulation of a visible or near-infrared probe laser pulse, is limited by the shot noise of the latter. This constraint cannot be overcome without using a quantum resource.
View Article and Find Full Text PDFSmall
January 2025
XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Semiconductor photocatalysts embedded with rare earth upconversion nanoparticles (REUPs) are a promising strategy to improve their photoresponse range, but their photocatalytic performance within the near-infrared (NIR) region is far from satisfactory. Here, a method is reported to improve the photocatalytic activity by adjusting the nanocavity of upconversion nanoparticles inside a semiconductor. Two types of CdS embedded with NaYF:Yb,Er photocatalysts with core-shell structure (no cavity) (NYE/CdS) and yolk-shell structure (empty cavity) (NYE@CdS) are synthesized by different methods.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Physics and New Energy Device School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
Smart grippers serving as soft robotics have garnered extensive attentions owing to their great potentials in medical, biomedical, and industrial fields. Though a diversity of grippers that account for manipulating the small objects (e.g.
View Article and Find Full Text PDFJ ECT
January 2025
From the Mayo Clinic, Department of Psychiatry and Psychology, Rochester, MN.
Electroconvulsive therapy (ECT) is an effective treatment for severe depression, especially in treatment-resistant cases. However, its potential cognitive side effects necessitate careful dosing to balance therapeutic benefits and cognitive stability. Recent advances in electric field (E-field) modeling offer promising avenues to optimize ECT dosing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!