A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quenching Detrimental Reactions and Boosting Hole Extraction via Multifunctional NiO /Perovskite Interface Passivation for Efficient and Stable Inverted Solar Cells. | LitMetric

Nickel oxide (NiO ) is one of the most promising hole transport materials for inverted perovskite solar cells (PSCs). However, its application is severely restrained due to unfavorable interfacial reactions and insufficient charge carrier extraction. Herein, a multifunctional modification at the NiO /perovskite interface is developed via introducing fluorinated ammonium salt ligand to synthetically solve the obstacles. Specifically, the interface modification can chemically convert detrimental Ni to lower oxidation state, resulting in the elimination of interfacial redox reactions. Meanwhile, interfacial dipole is incorporated simultaneously to tune the work function of NiO and optimize energy level alignment, which effectively promotes the charge carrier extraction. Therefore, the modified NiO -based inverted PSCs achieve a remarkable power conversion efficiency (PCE) of 22.93%. Moreover, the unencapsulated devices obtain a significantly enhanced long-term stability, maintaining over 85% and 80% of the initial PCEs after storage in ambient air with a high relative humidity of 50-60% for 1000 h and continuous operation at maximum power point under one-sun illumination for 700 h, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202300241DOI Listing

Publication Analysis

Top Keywords

extraction multifunctional
8
nio /perovskite
8
/perovskite interface
8
solar cells
8
charge carrier
8
carrier extraction
8
nio
5
quenching detrimental
4
detrimental reactions
4
reactions boosting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!