Kinetics and mechanism for enzyme-catalyzed reactions of substrate pieces.

Methods Enzymol

Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY, United States. Electronic address:

Published: May 2023

The most important difference between enzyme and small molecule catalysts is that only enzymes utilize the large intrinsic binding energies of nonreacting portions of the substrate in stabilization of the transition state for the catalyzed reaction. A general protocol is described to determine the intrinsic phosphodianion binding energy for enzymatic catalysis of reactions of phosphate monoester substrates, and the intrinsic phosphite dianion binding energy in activation of enzymes for catalysis of phosphodianion truncated substrates, from the kinetic parameters for enzyme-catalyzed reactions of whole and truncated substrates. The enzyme-catalyzed reactions so-far documented that utilize dianion binding interactions for enzyme activation; and, their phosphodianion truncated substrates are summarized. A model for the utilization of dianion binding interactions for enzyme activation is described. The methods for the determination of the kinetic parameters for enzyme-catalyzed reactions of whole and truncated substrates, from initial velocity data, are described and illustrated by graphical plots of kinetic data. The results of studies on the effect of site-directed amino acid substitutions at orotidine 5'-monophosphate decarboxylase, triosephosphate isomerase, and glycerol-3-phosphate dehydrogenase provide strong support for the proposal that these enzymes utilize binding interactions with the substrate phosphodianion to hold the protein catalysts in reactive closed conformations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10251411PMC
http://dx.doi.org/10.1016/bs.mie.2023.03.002DOI Listing

Publication Analysis

Top Keywords

enzyme-catalyzed reactions
16
truncated substrates
16
dianion binding
12
binding interactions
12
enzymes utilize
8
binding energy
8
phosphodianion truncated
8
kinetic parameters
8
parameters enzyme-catalyzed
8
reactions truncated
8

Similar Publications

Personalized statin therapy: Targeting metabolic processes to modulate the therapeutic and adverse effects of statins.

Heliyon

January 2025

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China.

Statins are widely used for treating lipid disorders and cardiovascular diseases. However, the therapeutic efficiency and adverse effects of statins vary among different patients, which numerous clinical and epidemiological studies have attributed to genetic polymorphisms in statin-metabolizing enzymes and transport proteins. The metabolic processes of statins are relatively complex, involving spontaneous or enzyme-catalyzed interconversion between more toxic lactone metabolites and active acid forms in the liver and bloodstream, influenced by multiple factors, including the expression levels of many metabolic enzymes and transporters.

View Article and Find Full Text PDF

The Hsp100 family of protein disaggregases play important roles in maintaining protein homeostasis in cells. E. coli ClpB is an Hsp100 protein that solubilizes protein aggregates.

View Article and Find Full Text PDF

Climate change and the energy crisis, driven by excessive CO emissions, have emerged as pressing global challenges. The conversion of CO into high-value chemicals not only mitigates atmospheric CO levels but also optimizes carbon resource utilization. Enzyme-catalyzed carbon technology offers a green and efficient approach to CO conversion.

View Article and Find Full Text PDF

[Transaminases: high-throughput screening a ketone-fluorescent probe and applications].

Sheng Wu Gong Cheng Xue Bao

January 2025

College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.

Transaminases are a class of enzymes that catalyze the transfer of amino between amino acids and keto acids, playing an important role in the biosynthesis of organic amines and the corresponding derivatives. However, natural enzymes often have low catalytic efficiency against non-natural substrates, which limits their widespread applications. Enzyme engineering serves as an effective approach to improve the catalytic properties and thereby expand the application scope of transaminases.

View Article and Find Full Text PDF

The enzyme-catalyzed synthesis of calcium phosphate is a promising method for producing calcium-based nanomaterials for biomedical applications. The purpose of this work was to determine the type of phosphate that forms when alkaline phosphatase catalyzes the reaction, and to identify the role of natural biopolymers in calcium phosphate formation. In this research, we analyzed calcium phosphates that were synthesized in the presence of alkaline phosphatase from either E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!