Cadmium (Cd) is a harmful environmental pollutant that causes damage to the nervous system, and exposure to Cd also disrupts the gut microbiota. However, it is still unclear whether Cd-induced neurotoxicity is related to alteration of the microbiota. In this study, we first established a germ-free (GF) zebrafish model to avoid the effects of gut microbiota disturbances caused by Cd exposure, and found that Cd-induced neurotoxic effects were weak in GF zebrafish. RNA sequencing showed that expression levels of V-ATPase family genes (atp6v1g1, atp6v1b2, and atp6v0cb) were significantly decreased in Cd-treated conventionally reared (CV) zebrafish, while this inhibition could be avoided in GF zebrafish. Overexpression of atp6v0cb in the V-ATPase family could partially rescue Cd-induced neurotoxicity. Our study shows that the disturbance of gut microbiota aggravates Cd-induced neurotoxicity, and that this may be associated with the expression of several genes in the V-ATPase family.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.164074 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!