New indoleacetic acid-functionalized soluble oxidized starch-based nonionic biopolymers as natural antibacterial materials.

Int J Biol Macromol

Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.

Published: July 2023

This study aims to develop a new soluble oxidized starch-based nonionic antibacterial polymer (OCSI) featuring high antibacterial activity and non-leachability by grafting indoleacetic acid monomer (IAA) onto the oxidized corn starch (OCS). The synthesized OCSI was characterized analytically by Nuclear magnetic resonance H-spectrometer (H NMR), Fourier transform infrared spectroscopy (FTIR), Ultraviolet-visible spectroscopy (UV-Vis), X-ray diffractometer (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electronic Microscopy (SEM), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results showed that the synthesized OCSI was endowed with high thermal stability and favorable solubility, and the substitution degree reached 0.6. Besides, the disk diffusion test revealed a lowest OCSI inhibitory concentration of 5 μg disk, and showed significant bactericidal activity against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). Moreover, the antibacterial films (OCSI-PCL), featuring their good compatibility, mechanical properties, antibacterial activity, non-leachability, and low water vapor permeability (WVP), were also successfully prepared by blending OCSI with biodegradable polycaprolactone (PCL). Finally, CCK-8 assay results confirmed the excellent biocompatibility of the OCSI-PCL films. Overall, this very study evidenced the applicability of the obtained oxidized starch-based biopolymers as an eco-friendly non-ionic antibacterial material and confirmed their promising applications in areas including biomedical materials, medical devices, and food packaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.125071DOI Listing

Publication Analysis

Top Keywords

oxidized starch-based
12
soluble oxidized
8
starch-based nonionic
8
antibacterial activity
8
activity non-leachability
8
synthesized ocsi
8
antibacterial
6
ocsi
5
indoleacetic acid-functionalized
4
acid-functionalized soluble
4

Similar Publications

To strengthen starch gel quality and improve the deterioration from freeze-thaw cycles, corn starch/whey protein isolate (WPI)/caffeic acid (CA) composite gels were rationally constructed in this study. The results showed that the introduction of WPI and CA significantly optimized the microstructure of the gels, an observation verified by SEM and CLSM. In addition, FT-IR and XRD analyses further revealed that the interaction mechanism within the composite gel was mainly due to the reinforcement of hydrogen bonds.

View Article and Find Full Text PDF

Synthesis of a novel starch-based emulsion gel with remarkable low-temperature stability via esterification, ozone-oxidation and ion induction.

Carbohydr Polym

March 2025

Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China. Electronic address:

A novel starch-based emulsion gel was designed via octenyl succinic anhydride (OSA) esterification, ozone oxidation, and ion (Ca) induction. The gel properties and low-temperature stability of emulsion gel with different oxidation time (0, 5, 10, 15, 25 min; OW-0, 5, 10, 15, 25) were systematically investigated. FTIR revealed that the oxidation of CC and -OH groups in OW-0 by ozone oxidation led to their cleavage into carbonyl groups, and than transformed to carboxyl groups.

View Article and Find Full Text PDF

Background: Pickering emulsions prepared with octenyl succinic anhydride-modified starch (OSAS) show significant promise as replacements for animal fat. However, the underlying mechanism of incorporating an OSAS-based Pickering emulsion into a myofibrillar protein (MP) gel and its impact on the gel properties remain poorly understood. In this study, the effects of OSAS at varying concentrations (0-10.

View Article and Find Full Text PDF

Injectable bioresponsive bone adhesive hydrogels inhibit NLRP3 inflammasome on demand to accelerate diabetic fracture healing.

Biomaterials

December 2024

Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China. Electronic address:

Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS).

View Article and Find Full Text PDF

Ecotoxicity of Biodegradable Microplastics and Bio-based Microplastics: A Review of in vitro and in vivo Studies.

Environ Manage

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.

As biodegradable and bio-based plastics increasingly replace conventional plastics, the need for a comprehensive understanding of their ecotoxicity becomes more pressing. This review systematically presents the ecotoxicity of the microplastics (MPs) from different biodegradable plastics and bioplastics on various animals and plants. High doses of polylactic acid (PLA) MPs (10%) have been found to reduce plant nitrogen content and biomass, and affect the accumulation of heavy metals in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!