Purification, characterization and proteolytic processing of mosquito larvicidal protein Cry11Aa from Bacillus thuringiensis subsp. israelensis ISPC-12.

Int J Biol Macromol

Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, Maharashtra, India; Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India. Electronic address:

Published: July 2023

Cry11Aa is the most potent mosquito larvicidal protein of Bacillus thuringiensis subsp. israelensis (Bti). Development of resistance against insecticidal proteins including Cry11Aa is known but no field resistance was observed with Bti. The phenomenon of increasing resistance in insect pests necessitates the development of new strategies and techniques to enhance efficacy of insecticidal proteins. Recombinant technology offers better control over the molecule and allows modification of protein to achieve maximal effect against target pests. In this study, we standardised protocol for recombinant purification of Cry11Aa. Recombinant Cry11Aa found active against larvae of Aedes and Culex mosquito species and LC were estimated. Detailed biophysical characterization provides crucial insights into stability and in-vitro behaviour of the recombinant Cry11Aa. Moreover, trypsin hydrolysis doesn't improve overall toxicity of recombinant Cry11Aa. Proteolytic processing suggests domain I and II are more prone to proteolysis in comparison to domain III. Significance of structural features for proteolysis of Cry11Aa was observed after performing molecular dynamics simulations. Findings reported here are contributing significantly in method for purification, understanding in-vitro behaviour and proteolytic processing of Cry11Aa which could facilitate in efficient utilisation of Bti for insect pests and vectors control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.124979DOI Listing

Publication Analysis

Top Keywords

proteolytic processing
12
recombinant cry11aa
12
cry11aa
9
mosquito larvicidal
8
larvicidal protein
8
bacillus thuringiensis
8
thuringiensis subsp
8
subsp israelensis
8
insecticidal proteins
8
insect pests
8

Similar Publications

Unlabelled: The maturation of RNA is mediated by the coordinated actions of RNA-binding proteins through post-transcriptional pre-mRNA processing. This process is a central regulatory mechanism for gene expression and plays a crucial role in the development of complex biological systems. MYC directly upregulates transcription of genes encoding the core components of pre-mRNA splicing machinery.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on developing a rapid method to identify microbial strains from seaweed that can quickly acidify, utilize seaweed components, and exhibit proteolytic activity.
  • By using high-throughput screening methods, researchers found specific strains of lactic acid bacteria (LAB) that effectively acidified seaweed in lab-scale tests, specifically Lactiplantibacillus plantarum and Lacticaseibacillus paracasei.
  • The results indicate potential for these strains in seaweed fermentation and suggest that while proteolytic activity was limited, certain strains could release beneficial amino acids during the process.
View Article and Find Full Text PDF

Both 20S and 19S proteasome components are essential for meiosis in male mice.

Zool Res

January 2025

Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China. E-mail:

The proteasome, an evolutionarily conserved proteolytic complex comprising the 20S core particle and 19S regulatory particles, performs both shared and distinct functions across various tissues and organs. Spermatogenesis, a highly complex developmental process, relies on proteasome activity at multiple stages to regulate protein turnover. In this study, we selected the 20S subunit PSMA1 and 19S regulatory subunit PSMD2 to investigate the potential functions of the proteasome in spermatogenesis.

View Article and Find Full Text PDF

The efflux pump ABCC1/MRP1 constitutively restricts PROTAC sensitivity in cancer cells.

Cell Chem Biol

December 2024

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria. Electronic address:

Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that induce selective protein degradation by linking an E3 ubiquitin ligase enzyme to a target protein. This approach allows scope for targeting "undruggable" proteins, and several PROTACs have reached the stage of clinical candidates. However, the roles of cellular transmembrane transporters in PROTAC uptake and efflux remain underexplored.

View Article and Find Full Text PDF

Formation of molecularly imprinted polymers: Strategies applied for the removal of protein template (review).

Adv Colloid Interface Sci

December 2024

Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania. Electronic address:

The key step in the entire molecularly imprinted polymer (MIP) preparation process is the formation of the complementary cavities in the polymer matrix through the template removal process. The template is removed using chemical treatments, leaving behind selective binding sites for target molecules within the polymer matrix. Other MIP preparation steps include mixing monomers and template molecules in the appropriate solvent(s), monomer-template complex equilibration, and polymerisation of the monomers around the template.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!