AI Article Synopsis

  • The lyophilization process can affect the stability of nanoparticles due to higher concentrations in the freeze-concentrate, making controlled ice nucleation an important technique in the pharmaceutical industry for uniform ice formation.
  • Research focused on the stability of solid lipid nanoparticles, polymeric nanoparticles, and liposomes under varying freezing conditions, finding that the residual moisture and particle size were largely unaffected by the method of ice nucleation.
  • Using trehalose as a lyoprotectant improved the long-term stability of freeze-dried liposomes compared to sucrose, showing it to be a more effective option for maintaining stability at higher temperatures.

Article Abstract

The freezing step of the lyophilization process can impact nanoparticle stability due to increased particle concentration in the freeze-concentrate. Controlled ice nucleation is a technique to achieve uniform ice crystal formation between vials in the same batch and has attracted increasing attention in pharmaceutical industry. We investigated the impact of controlled ice nucleation on three types of nanoparticles: solid lipid nanoparticles (SLNs), polymeric nanoparticles (PNs), and liposomes. Freezing conditions with different ice nucleation temperatures or freezing rates were employed for freeze-drying all formulations. Both in-process stability and storage stability up to 6 months of all formulations were assessed. Compared with spontaneous ice nucleation, controlled ice nucleation did not cause significant differences in residual moisture and particle size of freeze-dried nanoparticles. The residence time in the freeze-concentrate was a more critical factor influencing the stability of nanoparticles than the ice nucleation temperature. Liposomes freeze-dried with sucrose showed particle size increase during storage regardless of freezing conditions. By replacing sucrose with trehalose, or adding trehalose as a second lyoprotectant, both the physical and chemical stability of freeze-dried liposomes improved. Trehalose was a preferable lyoprotectant than sucrose to better maintain the long-term stability of freeze-dried nanoparticles at room temperature or 40 °C.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2023.123084DOI Listing

Publication Analysis

Top Keywords

ice nucleation
28
controlled ice
16
impact controlled
8
ice
8
nanoparticle stability
8
storage freezing
8
freezing conditions
8
particle size
8
freeze-dried nanoparticles
8
stability freeze-dried
8

Similar Publications

Role variability of surface chemistry and surface topography in anti-icing performance.

iScience

November 2024

Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

Largely varied anti-icing performance among superhydrophobic surfaces remains perplexing and challenging. Herein, the issue is elucidated by exploring the roles of surface chemistry and surface topography in anti-icing. Three superhydrophobic surfaces, i.

View Article and Find Full Text PDF

Numerous commercially available biopharmaceuticals are frozen or freeze-dried in vials. The temperature at which ice nucleates and its distribution across vials in a batch is critical to the design of freezing and freeze-drying processes. Here we study experimentally how the level of particulate impurities - a key parameter in pharmaceutical manufacturing - affects the ice nucleation behavior.

View Article and Find Full Text PDF

Ice interfaces are pivotal in mediating key chemical and physical processes such as heterogeneous chemical reactions in the environment, ice nucleation, and cloud microphysics. At the ice surface, water molecules form a quasi-liquid layer (QLL) with properties distinct from those of the bulk. Despite numerous experimental and theoretical studies, a molecular-level understanding of the QLL has remained elusive.

View Article and Find Full Text PDF

Homogeneous boiling over melting ice.

Sci Rep

January 2025

Mechanical Engineering Department, University of South Florida, Tampa, FL, 33620, USA.

We report on discovering the homogeneous boiling within a liquid film residual resting in equilibrium over a melting ice block. This phenomenon was induced via longwave infrared radiation generated by a continuous wave [Formula: see text] laser. This investigation employed a high-speed camera and the Schlieren visualization technique.

View Article and Find Full Text PDF

Polyol-Induced 100-Fold Enhancement of Bacterial Ice Nucleation Efficiency.

J Phys Chem C Nanomater Interfaces

December 2024

Department for Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.

Ice-nucleating proteins (INPs) from bacteria like are among the most effective ice nucleators known. However, large INP aggregates with maximum ice nucleation activity (at approximately -2 °C) typically account for less than 1% of the overall ice nucleation activity in bacterial samples. This study demonstrates that polyols significantly enhance the assembly of INPs into large aggregates, dramatically improving bacterial ice nucleation efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!