Cognitive impairment is a common and debilitating feature of multiple sclerosis (MS), and the dysregulation of synaptic plasticity is one of its direct causes. Long non-coding RNAs (lncRNAs) have been shown to play a role in synaptic plasticity, but their role in cognitive impairment in MS has not been fully explored. In this study, using quantitative real-time PCR, we examined the relative expression of two specific lncRNAs, BACE1-AS and BC200, in the serum of two cohorts of MS patients with and without cognitive impairment. Both lncRNAs were overexpressed in both cognitively impaired and non-cognitively impaired MS patients, with consistently higher levels in the cohort with cognitive impairment. We also found a strong positive correlation between the expression levels of these two lncRNAs. Notably, BACE1-AS was consistently higher in the remitting cases of both relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS) groups than in the respective relapse cases of the same subtype, with the SPMS-Remitting group of cognitively impaired MS patients showing the highest expression of BACE1-AS among all MS groups. Additionally, we observed that the primary progressive MS (PPMS) group had the highest expression of BC200 in both cohorts of MS. Furthermore, we developed a model called Neuro_Lnc-2, which showed better diagnostic performance than either BACE1-AS or BC200 alone in predicting MS. Our findings suggest that these two lncRNAs may have a significant impact on the pathogenesis of the progressive types of MS and on the cognitive function of the patients. Future research is required to confirm these findings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2023.148424DOI Listing

Publication Analysis

Top Keywords

cognitive impairment
16
bace1-as bc200
12
long non-coding
8
non-coding rnas
8
multiple sclerosis
8
cognitive function
8
synaptic plasticity
8
cognitively impaired
8
impaired patients
8
consistently higher
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!