Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pharmaceuticals in water are a growing environmental concern, as they can harm aquatic life and human health. To address this issue, an adsorbent made from coffee waste that effectively removes ibuprofen (a common pharmaceutical pollutant) from wastewater was developed. The experimental adsorption phase was planned using a Design of Experiments approach with Box-Behnken strategy. The relation between the ibuprofen removal efficiency and various independent variables, including adsorbent weight (0.01-0.1 g) and pH (3-9), was evaluated via a regression model with 3-level and 4-factors using the Response surface methodology (RSM) . The optimal ibuprofen removal was achieved after 15 min using 0.1 g adsorbent at 32.4 °C and pH = 6.9. Moreover, the process was optimized using two powerful bio-inspired metaheuristics (Bacterial Foraging Optimization and Virus Optimization Algorithm). The adsorption kinetics, equilibrium, and thermodynamics of ibuprofen onto waste coffee-derived activated carbon were modeled at the identified optimal conditions. The Langmuir and Freundlich adsorption isotherms were implemented to investigate adsorption equilibrium, and thermodynamic parameters were also calculated. According to the Langmuir isotherm model, the adsorbent's maximum adsorption capacity was 350.00 mg g at 35 °C. The findings revealed that the ibuprofen adsorption was well-matched with the Freundlich isotherm model, indicating multilayer adsorption on heterogeneous sites. The computed positive enthalpy value showed the endothermic nature of ibuprofen adsorption at the adsorbate interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.116223 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!