A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ImUnity: A generalizable VAE-GAN solution for multicenter MR image harmonization. | LitMetric

ImUnity: A generalizable VAE-GAN solution for multicenter MR image harmonization.

Med Image Anal

Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France. Electronic address:

Published: August 2023

ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module and an optional biological preservation module, uses multiple 2D slices taken from different anatomical locations in each subject of the training database, as well as image contrast transformations for its training. It eventually generates 'corrected' MR images that can be used for various multi-center population studies. Using 3 open source databases (ABIDE, OASIS and SRPBS), which contain MR images from multiple acquisition scanner types or vendors and a large range of subjects ages, we show that ImUnity: (1) outperforms state-of-the-art methods in terms of quality of images generated using traveling subjects; (2) removes sites or scanner biases while improving patients classification; (3) harmonizes data coming from new sites or scanners without the need for an additional fine-tuning and (4) allows the selection of multiple MR reconstructed images according to the desired applications. Tested here on T1-weighted images, ImUnity could be used to harmonize other types of medical images.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2023.102799DOI Listing

Publication Analysis

Top Keywords

image harmonization
8
images
6
imunity
4
imunity generalizable
4
generalizable vae-gan
4
vae-gan solution
4
solution multicenter
4
multicenter image
4
harmonization imunity
4
imunity original
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!