AIEgen-sensitized lanthanide nanocrystals as luminescent probes for intracellular Fe monitoring.

Talanta

College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350116, China. Electronic address:

Published: September 2023

The abnormal Fe level is known to cause various diseases, such as heart failure, liver damage and neurodegeneration. In situ probing Fe in living cells or organisms is highly desired for both biological research and medical diagnostics. Herein, hybrid nanocomposites NaEuF@TCPP were constructed by the assembly of an aggregation-induced emission luminogen (AIEgen) TCPP and NaEuF nanocrystals (NCs). The anchored TCPP on the surface of NaEuF NCs can reduce rotational relaxation of the excited state and efficiently transfer the energy to the Eu ions with minimized nonradiative energy loss. Consequently, the prepared NaEuF@TCPP nanoparticles (NPs) exhibited an intense red emission with a 103-fold enhancement relative to that in NaEuF NCs under 365 nm excitation. A selectively quenching response to Fe ions for the NaEuF@TCPP NPs makes them luminescent probes for sensitive detection of Fe ions with a low detection limit of 340 nM. Moreover, the luminescence of NaEuF@TCPP NPs could be recovered by the addition of iron chelators. Benefiting from their good biocompatibility and stability in living cells, together with the characteristic of the reversible luminescence response, the lipo-coated NaEuF@TCPP probes were successfully applied for real-time monitoring of Fe ions in living HeLa cells. These results are expected to motivate the exploration of AIE-based lanthanide probes for sensing and biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2023.124729DOI Listing

Publication Analysis

Top Keywords

luminescent probes
8
living cells
8
naeuf ncs
8
naeuf@tcpp nps
8
naeuf@tcpp
5
aiegen-sensitized lanthanide
4
lanthanide nanocrystals
4
nanocrystals luminescent
4
probes
4
probes intracellular
4

Similar Publications

The fused heterocycle 1-(imidazo[5,1-a]isoquinolin-3-yl)naphthalen-2-ol (LH) has been synthesized and characterized by spectroscopic methods. Probe LH upon irradiation with λ = 336 nm exhibited strong fluorescence with λ = 437 nm in MeOH/HEPES buffer (5 mM, pH = 7.4, 2:8, v/v).

View Article and Find Full Text PDF

Stepwise Lighting Up Gold(I)-Thiolate Complexes from AIE Nanoaggregates to AIEE Nanoprobes with a ZIF-8 Shell for Glucose Biosensing.

Anal Chem

January 2025

School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.

Aggregation-induced emission (AIE) or aggregation-induced emission enhancement (AIEE) has endowed gold species with responsive fluorescent properties, favoring their potential applications in sensing, imaging, and therapy. However, it remains an interesting challenge to fabricate fluorophores with both AIE and AIEE effects. Herein, we presented highly luminescent Au(I) thiolate nanocomplex-based biosensors with Zn induced-AIE and zeolite imidazolate framework (ZIF-8) induced-AIEE effects.

View Article and Find Full Text PDF

Aggregation-caused quenching (ACQ) reduces luminescence and compromises brightness in solid-state displays, necessitating strategies to mitigate its effects for enhanced performance. This study presents cost-effective method to mitigate ACQ of pyrene by co-assembling polycyclic aromatic hydrocarbons within low molecular weight gelator. ​Synthesized from readily available materials-cholesteryl chloroformate and pentaerythritol-in one-step reaction, gelator incorporates four cholesteryl units, reported to promote robust supramolecular gels in various solvents.

View Article and Find Full Text PDF

The reaction-based probe perylene diimide-hydroxyphenyl benzothiazole (PR) can be used for the detection and discrimination of HS, DTT and Cys in 20% HEPES buffer-DMSO and DMSO. The HS induced radical anion formation of PR in 20% HEPES buffer and thiolysis of the ether bond of PR in DMSO. However, the addition of DTT showed only a decrease in the absorbance intensity and Cys showed insignificant behaviour towards PR in DMSO.

View Article and Find Full Text PDF

A supramolecular assembly of a novel green fluorescent protein chromophore-based analogue and its application in fluorescence anti-counterfeiting.

J Mater Chem B

January 2025

The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.

Supramolecular fluorescent materials with switchable behavior and induced luminescence enhancement are a new class of special materials for constructing fluorescence anti-counterfeiting materials. Since these materials are constructed by self-assembly through supramolecular host-guest interactions of non-covalent bonds, such fluorescent materials can regulate their optical properties through a reversible assembly-disassembly process. Inspired by the role of the β-barrel scaffold in activating strong fluorescence of a green fluorescent protein (GFP) chromophore, we designed a supramolecular system based on a novel GFP analogue (CA) and cucurbit[7]uril (CB[7]).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!